Development of numerical simulation method for melt relocation behavior in nuclear reactors: validation and applicability for actual core structures

[1]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[2]  K. Y. Suh,et al.  Molten Material Relocation into the Lower Plenum: a Status Report , 1998 .

[3]  Noriyuki Shirakawa,et al.  Development of Severe Accident Analysis Code SAMPSON in IMPACT Project , 1999 .

[4]  Nicholas Zabaras,et al.  A least‐squares front‐tracking finite element method analysis of phase change with natural convection , 1994 .

[5]  Hiroshi Ujita,et al.  Development of Molten Core Relocation Analysis Module MCRA in the Severe Accident Analysis Code SAMPSON , 2000 .

[6]  Kensuke Yokoi,et al.  Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm , 2007, J. Comput. Phys..

[7]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[8]  Jungwoo Kim,et al.  An immersed-boundary finite-volume method for simulations of flow in complex geometries , 2001 .

[9]  R. O. Gauntt,et al.  Final results of the XR2-1 BWR metallic melt relocation experiment , 1997 .

[10]  Marc Barrachin,et al.  Late phase fuel degradation in the Phébus FP tests , 2013 .

[11]  Yuji Ohishi,et al.  Thermophysical properties of molten core materials: Zr–Fe alloys measured by electrostatic levitation , 2016 .

[12]  Feng Xiao,et al.  A simple algebraic interface capturing scheme using hyperbolic tangent function , 2005 .

[13]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[14]  Kazuyuki Takase,et al.  Development of Numerical Simulation Method for Relocation Behavior of Molten Materials in Nuclear Reactors: Analysis of Relocation Behavior for Molten Materials With a Simulated Decay Heat Model , 2014 .