Fast algorithms for spherical harmonic expansions, II
暂无分享,去创建一个
[1] Per-Gunnar Martinsson,et al. On interpolation and integration in finite-dimensional spaces of bounded functions , 2005 .
[2] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[3] Reiji Suda. Fast Spherical Harmonic Transform Routine FLTSS Applied to the Shallow Water Test Set , 2005 .
[4] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[5] Vladimir Rokhlin,et al. A Fast Algorithm for the Calculation of the Roots of Special Functions , 2007, SIAM J. Sci. Comput..
[6] Lexing Ying,et al. Sparse Fourier Transform via Butterfly Algorithm , 2008, SIAM J. Sci. Comput..
[7] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[8] William H. Press,et al. Numerical recipes , 1990 .
[9] Paul N. Swarztrauber,et al. Shallow Water Flow on the Sphere , 2004 .
[10] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..
[11] Martin J. Mohlenkamp. A fast transform for spherical harmonics , 1997 .
[12] Michael O'Neil,et al. A new class of analysis-based fast transforms , 2007 .
[13] V. Rokhlin,et al. A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics , 1998 .
[14] T. Mexia,et al. Author ' s personal copy , 2009 .
[15] Laurent Demanet,et al. A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators , 2008, Multiscale Model. Simul..
[16] E. Michielssen,et al. A multilevel matrix decomposition algorithm for analyzing scattering from large structures , 1996 .
[17] Mark Tygert,et al. Fast Algorithms for Spherical Harmonic Expansions , 2006, SIAM J. Sci. Comput..
[18] Alfred V. Aho,et al. Data Structures and Algorithms , 1983 .
[19] Per-Gunnar Martinsson,et al. An Accelerated Kernel-Independent Fast Multipole Method in One Dimension , 2007, SIAM J. Sci. Comput..
[20] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[21] Paul N. Swarztrauber. Spectral Transform Methods for Solving the Shallow-Water Equations on the Sphere , 1996 .
[22] Sean S. B. Moore,et al. FFTs for the 2-Sphere-Improvements and Variations , 1996 .
[23] Stefan Kunis,et al. Fast spherical Fourier algorithms , 2003 .
[24] Eugene E. Tyrtyshnikov,et al. Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.
[25] Per-Gunnar Martinsson,et al. On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..
[26] Mark A Ratner,et al. A fast method for solving both the time-dependent Schrödinger equation in angular coordinates and its associated "m-mixing" problem. , 2009, The Journal of chemical physics.
[27] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[28] Reiji Suda,et al. A fast spherical harmonics transform algorithm , 2002, Math. Comput..
[29] Bradley K. Alpert,et al. A Fast Spherical Filter with Uniform Resolution , 1997 .
[30] Michael O'Neil,et al. An algorithm for the rapid evaluation of special function transforms , 2010 .
[31] P. Swarztrauber,et al. Generalized Discrete Spherical Harmonic Transforms , 2000 .
[32] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[33] P. Swarztrauber,et al. SPHEREPACK 3.0: A Model Development Facility , 1999 .
[34] Mark Tygert. Recurrence relations and fast algorithms , 2006, ArXiv.
[35] Dennis M. Healy,et al. Towards Safe and Effective High-Order Legendre Transforms with Applications to FFTs for the 2-sphere , 2004, Adv. Comput. Math..
[36] Norman Yarvin,et al. An Improved Fast Multipole Algorithm for Potential Fields on the Line , 1999 .
[37] Andreas Glaser,et al. A New Class of Highly Accurate Solvers for Ordinary Differential Equations , 2009, J. Sci. Comput..