Fast algorithms for spherical harmonic expansions, II

We provide an efficient algorithm for calculating, at appropriately chosen points on the two-dimensional surface of the unit sphere in R^3, the values of functions that are specified by their spherical harmonic expansions (a procedure known as the inverse spherical harmonic transform). We also provide an efficient algorithm for calculating the coefficients in the spherical harmonic expansions of functions that are specified by their values at these appropriately chosen points (a procedure known as the forward spherical harmonic transform). The algorithms are numerically stable, and, if the number of points in our standard tensor-product discretization of the surface of the sphere is proportional to l^2, then the algorithms have costs proportional to l^2ln(l) at any fixed precision of computations. Several numerical examples illustrate the performance of the algorithms.

[1]  Per-Gunnar Martinsson,et al.  On interpolation and integration in finite-dimensional spaces of bounded functions , 2005 .

[2]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[3]  Reiji Suda Fast Spherical Harmonic Transform Routine FLTSS Applied to the Shallow Water Test Set , 2005 .

[4]  S. Eisenstat,et al.  A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..

[5]  Vladimir Rokhlin,et al.  A Fast Algorithm for the Calculation of the Roots of Special Functions , 2007, SIAM J. Sci. Comput..

[6]  Lexing Ying,et al.  Sparse Fourier Transform via Butterfly Algorithm , 2008, SIAM J. Sci. Comput..

[7]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[8]  William H. Press,et al.  Numerical recipes , 1990 .

[9]  Paul N. Swarztrauber,et al.  Shallow Water Flow on the Sphere , 2004 .

[10]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..

[11]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[12]  Michael O'Neil,et al.  A new class of analysis-based fast transforms , 2007 .

[13]  V. Rokhlin,et al.  A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics , 1998 .

[14]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[15]  Laurent Demanet,et al.  A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators , 2008, Multiscale Model. Simul..

[16]  E. Michielssen,et al.  A multilevel matrix decomposition algorithm for analyzing scattering from large structures , 1996 .

[17]  Mark Tygert,et al.  Fast Algorithms for Spherical Harmonic Expansions , 2006, SIAM J. Sci. Comput..

[18]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[19]  Per-Gunnar Martinsson,et al.  An Accelerated Kernel-Independent Fast Multipole Method in One Dimension , 2007, SIAM J. Sci. Comput..

[20]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[21]  Paul N. Swarztrauber Spectral Transform Methods for Solving the Shallow-Water Equations on the Sphere , 1996 .

[22]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[23]  Stefan Kunis,et al.  Fast spherical Fourier algorithms , 2003 .

[24]  Eugene E. Tyrtyshnikov,et al.  Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.

[25]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[26]  Mark A Ratner,et al.  A fast method for solving both the time-dependent Schrödinger equation in angular coordinates and its associated "m-mixing" problem. , 2009, The Journal of chemical physics.

[27]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[28]  Reiji Suda,et al.  A fast spherical harmonics transform algorithm , 2002, Math. Comput..

[29]  Bradley K. Alpert,et al.  A Fast Spherical Filter with Uniform Resolution , 1997 .

[30]  Michael O'Neil,et al.  An algorithm for the rapid evaluation of special function transforms , 2010 .

[31]  P. Swarztrauber,et al.  Generalized Discrete Spherical Harmonic Transforms , 2000 .

[32]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[33]  P. Swarztrauber,et al.  SPHEREPACK 3.0: A Model Development Facility , 1999 .

[34]  Mark Tygert Recurrence relations and fast algorithms , 2006, ArXiv.

[35]  Dennis M. Healy,et al.  Towards Safe and Effective High-Order Legendre Transforms with Applications to FFTs for the 2-sphere , 2004, Adv. Comput. Math..

[36]  Norman Yarvin,et al.  An Improved Fast Multipole Algorithm for Potential Fields on the Line , 1999 .

[37]  Andreas Glaser,et al.  A New Class of Highly Accurate Solvers for Ordinary Differential Equations , 2009, J. Sci. Comput..