A New Chaotic Attractor Around a Pre-Located Ring

Designing chaotic systems with specific features is a very interesting topic in nonlinear dynamics. However most of the efforts in this area are about features in the structure of the equations, while there is less attention to features in the topology of strange attractors. In this paper, we introduce a new chaotic system with unique property. It has been designed in such a way that a specific property has been injected to it. This new system is analyzed carefully and its real circuit implementation is presented.

[1]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[2]  Julien Clinton Sprott Symmetric Time-Reversible Flows with a Strange Attractor , 2015, Int. J. Bifurc. Chaos.

[3]  Viet-Thanh Pham,et al.  Multiscroll Chaotic Sea Obtained from a Simple 3D System Without Equilibrium , 2016, Int. J. Bifurc. Chaos.

[4]  José-Cruz Nuñez Pérez,et al.  FPGA realization of multi-scroll chaotic oscillators , 2015, Commun. Nonlinear Sci. Numer. Simul..

[5]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[6]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium , 2015 .

[7]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[8]  Julien Clinton Sprott,et al.  Simplest Chaotic Flows with Involutional Symmetries , 2014, Int. J. Bifurc. Chaos.

[9]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[10]  Zhouchao Wei,et al.  Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium , 2014, Int. J. Bifurc. Chaos.

[11]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[12]  M. Golubitsky,et al.  Fearful Symmetry: Is God a Geometer? , 1992 .

[13]  Julien Clinton Sprott,et al.  Simple chaotic 3D flows with surfaces of equilibria , 2016 .

[14]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[16]  Nikolay V. Kuznetsov,et al.  Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..

[17]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[18]  Nikolay V. Kuznetsov,et al.  Control of multistability in hidden attractors , 2015 .

[19]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[20]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[21]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[22]  J. Sprott,et al.  A search for the simplest chaotic partial differential equation , 2009 .

[23]  Julien Clinton Sprott,et al.  Multistability in symmetric chaotic systems , 2015 .

[24]  Runtong Chu,et al.  Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice , 2014 .

[25]  Guanrong Chen,et al.  Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.

[26]  Awadhesh Prasad,et al.  Controlling Dynamics of Hidden Attractors , 2015, Int. J. Bifurc. Chaos.

[27]  Viet-Thanh Pham,et al.  A Chaotic System with Different Shapes of Equilibria , 2016, Int. J. Bifurc. Chaos.

[28]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[29]  Rongrong Wang,et al.  A new finding of the existence of hidden hyperchaotic attractors with no equilibria , 2014, Math. Comput. Simul..

[30]  Julien Clinton Sprott,et al.  The Equivalence of Dissipation from Gibbs' Entropy Production with Phase-Volume Loss in Ergodic Heat-Conducting Oscillators , 2016, Int. J. Bifurc. Chaos.

[31]  Julien Clinton Sprott,et al.  A Simple Chaotic Flow with a Plane of Equilibria , 2016, Int. J. Bifurc. Chaos.