A New Chaotic Attractor Around a Pre-Located Ring
暂无分享,去创建一个
Zhe Xu | Viet-Thanh Pham | Zhen Wang | Sajad Jafari | Akif Akgul | Ezzedine Mliki | S. Jafari | V. Pham | Zhen Wang | Akif Akgul | E. Mliki | Zhe Xu
[1] G. Leonov,et al. Localization of hidden Chuaʼs attractors , 2011 .
[2] Julien Clinton Sprott. Symmetric Time-Reversible Flows with a Strange Attractor , 2015, Int. J. Bifurc. Chaos.
[3] Viet-Thanh Pham,et al. Multiscroll Chaotic Sea Obtained from a Simple 3D System Without Equilibrium , 2016, Int. J. Bifurc. Chaos.
[4] José-Cruz Nuñez Pérez,et al. FPGA realization of multi-scroll chaotic oscillators , 2015, Commun. Nonlinear Sci. Numer. Simul..
[5] Julien Clinton Sprott,et al. Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.
[6] Julien Clinton Sprott,et al. Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium , 2015 .
[7] Nikolay V. Kuznetsov,et al. Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.
[8] Julien Clinton Sprott,et al. Simplest Chaotic Flows with Involutional Symmetries , 2014, Int. J. Bifurc. Chaos.
[9] Nikolay V. Kuznetsov,et al. Hidden attractor in smooth Chua systems , 2012 .
[10] Zhouchao Wei,et al. Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium , 2014, Int. J. Bifurc. Chaos.
[11] Guanrong Chen,et al. A chaotic system with only one stable equilibrium , 2011, 1101.4067.
[12] M. Golubitsky,et al. Fearful Symmetry: Is God a Geometer? , 1992 .
[13] Julien Clinton Sprott,et al. Simple chaotic 3D flows with surfaces of equilibria , 2016 .
[14] J. Sprott,et al. Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[15] Nikolay V. Kuznetsov,et al. Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .
[16] Nikolay V. Kuznetsov,et al. Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..
[17] T. N. Mokaev,et al. Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .
[18] Nikolay V. Kuznetsov,et al. Control of multistability in hidden attractors , 2015 .
[19] Julien Clinton Sprott,et al. Elementary quadratic chaotic flows with no equilibria , 2013 .
[20] Zhouchao Wei,et al. Dynamical behaviors of a chaotic system with no equilibria , 2011 .
[21] G. Leonov,et al. Hidden attractors in dynamical systems , 2016 .
[22] J. Sprott,et al. A search for the simplest chaotic partial differential equation , 2009 .
[23] Julien Clinton Sprott,et al. Multistability in symmetric chaotic systems , 2015 .
[24] Runtong Chu,et al. Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice , 2014 .
[25] Guanrong Chen,et al. Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.
[26] Awadhesh Prasad,et al. Controlling Dynamics of Hidden Attractors , 2015, Int. J. Bifurc. Chaos.
[27] Viet-Thanh Pham,et al. A Chaotic System with Different Shapes of Equilibria , 2016, Int. J. Bifurc. Chaos.
[28] Julien Clinton Sprott,et al. Simple chaotic flows with a line equilibrium , 2013 .
[29] Rongrong Wang,et al. A new finding of the existence of hidden hyperchaotic attractors with no equilibria , 2014, Math. Comput. Simul..
[30] Julien Clinton Sprott,et al. The Equivalence of Dissipation from Gibbs' Entropy Production with Phase-Volume Loss in Ergodic Heat-Conducting Oscillators , 2016, Int. J. Bifurc. Chaos.
[31] Julien Clinton Sprott,et al. A Simple Chaotic Flow with a Plane of Equilibria , 2016, Int. J. Bifurc. Chaos.