Optimization and valuation of recongurable satellite constellations under uncertainty

Space-based persistent surveillance provides decision makers with information necessary to effectively respond to both natural and man-made crises. This thesis investigates a reconfigurable constellation strategy that utilizes on-demand, maneuverable satellites to provide focused regional coverage with short revisit times at greatly decreased cost when compared to traditional static satellite constellations. The thesis develops and demonstrates a general framework to guide the design and optimization of reconfigurable satellite constellations specifically tailored to stakeholder objectives while considering requirement uncertainty. The framework is novel in that it avoids many of the assumptions and simplifications of past research by: 1. explicitly considering uncertainty in future operating conditions; 2. concurrently optimizing constellation pattern design, satellite design, and operations design; and, 3. investigating layered and asymmetric patterns. The framework consists of three elements: a detailed simulation model to compute constellation performance and cost for a variety of architectures and patterns, Monte Carlo simulation to determine how well each design performs under uncertain future conditions, and a parallel multi-objective evolutionary algorithm developed from the -NSGA-II genetic algorithm to find designs that maximize performance while simultaneously minimizing cost. Additionally, a new performance metric is developed to measure directly how well a design meets desired temporal and spatial sampling requirements and a decision model and optimal assignment process is developed to determine how to employ the option of reconfigurability to respond to specific regional events. The framework was used to perform 85 optimization runs selected to compare the costeffectiveness of several constellation architectures over varied operating conditions and coverage requirements. All optimization runs were performed in less than three months, demonstrating that parallel computing coupled with sophisticated optimization routines enable rapid spiral development of satellite constellations. Results show that reconfigurable constellations cost 20 to 70% less than similarly performing static constellations for the scenarios studied. The cost savings grows with increasingly demanding coverage requirements. Results from optimizing a fully asymmetric constellation pattern led to two the development of new ‘quasi’-asymmetric patterns that were found to significantly outperform symmetric patterns

[1]  Armin P. Schulz,et al.  Design for changeability (DfC): Principles to enable changes in systems throughout their entire lifecycle , 2005 .

[2]  Christian Bruccoleri Flower Constellation Optimization And Implementation , 2011 .

[3]  Jeremy Davis Constellation reconfiguration: Tools and analysis , 2010 .

[4]  M. Yamamura,et al.  Multi-parent recombination with simplex crossover in real coded genetic algorithms , 1999 .

[5]  Osama Mohamed Omar Abdelkhalik Orbit design and estimation for surveillance missions using genetic algorithms , 2006 .

[6]  K. Deb,et al.  Real-coded evolutionary algorithms with parent-centric recombination , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[7]  Stefania Tonetti,et al.  Optimization of Flower Constellations: Applications in Global Navigation Systems and Space Interferometry , 2009 .

[8]  Michel-Alexandre Cardin,et al.  4.5.1 Extracting Value from Uncertainty: A Methodology for Engineering Systems Design , 2007 .

[9]  P. Borcherds The Cambridge Handbook of Physics Formulas , 2000 .

[10]  Nick T. Thomopoulos Essentials of Monte Carlo Simulation , 2013 .

[11]  O. Weck,et al.  Optimal Reconfigurations for Increasing Capacity of Communication Satellite Constellations , 2005 .

[12]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[13]  Yuri Ulybyshev,et al.  Geometric Analysis and Design Method for Discontinuous Coverage Satellite Constellations , 2014 .

[14]  Giovanni Palmerini Design of global coverage constellations based on elliptical orbits , 1996 .

[15]  Afreen Siddiqi,et al.  Reconfigurability in planetary surface vehicles , 2009 .

[16]  John R. Olds,et al.  Design and Deployment of a Satellite Constellation Using Collaborative Optimization , 2004 .

[17]  William A. Crossley,et al.  SIMULATED ANNEALING AND GENETIC ALGORITHM APPROACHES FOR DISCONTINUOUS COVERAGE SATELLITE CONSTELLATION DESIGN , 2000 .

[18]  David E. Goldberg,et al.  Simplifying multiobjective optimization: An automated design methodology for the nondominated sorted genetic algorithm‐II , 2003 .

[19]  Patrick M. Reed,et al.  How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .

[20]  D. Smythe,et al.  Communication Satellites , 1965, Nature.

[21]  John Tulip,et al.  The RapidEye mission design , 2005 .

[22]  Ellen Riddle,et al.  Use of Optimization Methods in Small Satellite Systems Analysis , 1998 .

[23]  Der-Ming Ma,et al.  Exact Design of Partial Coverage Satellite Constellations over Oblate Earth , 1997 .

[24]  Afreen Siddiqi,et al.  Reconfigurability in space systems : architecting framework and case studies , 2006 .

[25]  Sergio Camacho-Lara Current and Future GNSS and Their Augmentation Systems , 2013 .

[26]  W. L. Dunn,et al.  Exploring Monte Carlo Methods , 2011 .

[27]  Carlos A. Coello Coello,et al.  Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering , 2012, IEEE Transactions on Evolutionary Computation.

[28]  Mauro Pontani,et al.  Satellite Constellations for Continuous and Early Warning Observation: A Correlation-Based Approach , 2007 .

[29]  Sung Wook Paek,et al.  Reconfigurable satellite constellations for geo-spatially adaptive Earth observation missions , 2012 .

[30]  David E. Goldberg Using Time Efficiently: Genetic-Evolutionary Algorithms and the Continuation Problem , 1999, GECCO.

[31]  Brian J. German,et al.  Optimizing Families of Reconfigurable Aircraft for Multiple Missions , 2012 .

[32]  A.H. Ballard,et al.  Rosette Constellations of Earth Satellites , 1980, IEEE Transactions on Aerospace and Electronic Systems.

[33]  Adam M. Ross,et al.  Quantifying Flexibility in Tradespace Exploration: Value Weighted Filtered Outdegree , 2009 .

[34]  Elisabeth Sylvie Lamassoure A framework to account for flexibility in modeling the value of on-orbit servicing for space systems , 2001 .

[35]  D. Mortari,et al.  Synodic and Relative Flower Constellations with Applications for Planetary Explorations , 2005 .

[36]  R. Neufville,et al.  Identification of Real Options “ in ” Projects , 2006 .

[37]  Richard de Neufville,et al.  Real Options to Increase the Value of Intelligent Transportation Systems , 2008 .

[38]  James R. Fienup,et al.  Analysis of the general image quality equation , 2008, SPIE Defense + Commercial Sensing.

[39]  David B. Spencer,et al.  General framework for the reconfiguration of satellite constellations , 2009 .

[40]  Kemper Lewis,et al.  Flexible and Reconfigurable Systems: Nomenclature and Review , 2007, DAC 2007.

[41]  Rahim Tafazolli,et al.  Satellite constellation design and radio resource management using genetic algorithm , 2004 .

[42]  J G Walker,et al.  Continuous Whole-Earth Coverage by Circular-Orbit Satellite Patterns , 1977 .

[43]  Todd Mosher Applicability of selected Multidisciplinary Design Optimization methods to conceptual spacecraft design , 1996 .

[44]  Matthew P. Ferringer,et al.  Constellation Design with Parallel Multi-Objective Evolutionary Computation , 2006 .

[45]  M. Guelman,et al.  Electric Propulsion for Remote Sensing from Low Orbits , 1999 .

[46]  J. Hanson,et al.  Improved low-altitude constellation design methods , 1989 .

[47]  Patrick M. Reed,et al.  Many-objective reconfiguration of operational satellite constellations with the Large-Cluster Epsilon Non-dominated Sorting Genetic Algorithm-II , 2009, 2009 IEEE Congress on Evolutionary Computation.

[48]  R. Neufville Real Options: Dealing With Uncertainty in Systems Planning and Design , 2003 .

[49]  John M. Colombi,et al.  An ontological framework for clarifying flexibility‐related terminology via literature survey , 2013, Syst. Eng..

[50]  J. Walker Some circular orbit patterns providing continuous whole earth coverage. , 1970 .

[51]  Moshe Guelman,et al.  Optimization of satellite constellation reconfiguration maneuvers , 2014 .

[52]  Daniel E. Hastings,et al.  Flexibility and the value of on-orbit servicing: New customer-centric perspective , 2003 .

[53]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[54]  Patrick M. Reed,et al.  Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization , 2012, Evolutionary Computation.

[55]  Rahim Tafazolli,et al.  Non-GEO Satellite Constellation Design with Satellite Diversity Using Genetic Algorithm , 2002 .

[56]  H. Philip Stahl,et al.  Update on multivariable parametric cost models for ground and space telescopes , 2012, Other Conferences.

[57]  Edwin A. Williams,et al.  Average and maximum revisit time trade studies for satellite constellations using a multiobjective Genetic Algorithm , 2001 .

[58]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[59]  Daniele Mortari,et al.  The 2-D lattice theory of Flower Constellations , 2013 .

[60]  Thomas J. Lang Symmetric circular orbit satellite constellations for continuous global coverage , 1988 .

[61]  A. Belegundu,et al.  Optimization Concepts and Applications in Engineering , 2011 .

[62]  D. Mortari,et al.  Flower constellation set theory. Part I: Compatibility and phasing , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[63]  Robert S. Chen,et al.  Natural Disaster Hotspots: A Global Risk Analysis , 2005 .

[64]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[65]  Kalyanmoy Deb,et al.  Analysing mutation schemes for real-parameter genetic algorithms , 2014, Int. J. Artif. Intell. Soft Comput..

[66]  James R. Wertz,et al.  Autonomous Constellation Maintenance , 1998 .

[67]  H. Philip Stahl,et al.  Survey of cost models for space telescopes , 2010 .

[68]  Jean Dickinson Gibbons,et al.  Nonparametric Statistical Inference , 1972, International Encyclopedia of Statistical Science.

[69]  Daniele Mortari,et al.  Orbit Design for Ground Surveillance Using Genetic Algorithms , 2006 .

[70]  Patrick M. Reed,et al.  The Value of Online Adaptive Search: A Performance Comparison of NSGAII, epsilon-NSGAII and epsilonMOEA , 2005, EMO.

[71]  Andrew E. Turner CONSTELLATION DESIGN USING WALKER PATTERNS , 2002 .

[72]  H. Philip Stahl,et al.  Update on parametric cost models for space telescopes , 2011, Optical Engineering + Applications.

[73]  Michel-Alexandre Cardin Facing reality : design and management of flexible engineering systems , 2007 .

[74]  R. Neufville,et al.  Design of Engineering Systems under Uncertainty via Real Options and Heuristic Optimization , 2006 .

[75]  B. Jackson Performance of meshed comb constellations for minimizing target revisit time , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[76]  Patrick M. Reed,et al.  Scalability Analysis of the Asynchronous, Master-Slave Borg Multiobjective Evolutionary Algorithm , 2013, 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum.

[77]  G. Mozhaev,et al.  Capabilities of Kinematically Regular Satellite Systems with Symmetry Groups of the Second Type in the Problem of Continuous Single Coverage of the Earth , 2005 .

[78]  Hyochoong Bang,et al.  A computational approach to reduce the revisit time using a genetic algorithm , 2007, 2007 International Conference on Control, Automation and Systems.

[79]  Adam M. Ross,et al.  Combining Pareto Trace with Filtered Outdegree as a Metric for Identifying Valuably Flexible Systems , 2009 .

[80]  Bernabé Dorronsoro,et al.  A Study of the Combination of Variation Operators in the NSGA-II Algorithm , 2013, CAEPIA.

[81]  Patrick M. Reed,et al.  Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework , 2013, Evolutionary Computation.

[82]  Michel van Tooren,et al.  On-orbit servicing system assessment and optimization methods based on lifecycle simulation under mixed aleatory and epistemic uncertainties , 2013 .

[83]  Thomas C. Co,et al.  Responsive Satellites through Ground Track Manipulation using Existing Technology , 2011 .

[84]  Olivier L. de Weck,et al.  Exploring Flexible Strategies in Engineering Systems Using Screening Models Applications to Offshore Petroleum Projects by Jijun Lin , 2008 .

[85]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[86]  Rania Hassan,et al.  Value-at-risk analysis for real options in complex engineered systems , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[87]  Olivier L. de Weck,et al.  Staged Deployment of Communications Satellite Constellations in Low Earth Orbit , 2004, J. Aerosp. Comput. Inf. Commun..

[88]  Jeng-Shing Chern,et al.  Taiwan's second remote sensing satellite , 2008 .

[89]  M. Martinez-Sanchez,et al.  Spacecraft Electric Propulsion—An Overview , 1998 .

[90]  Irene Arianti Budianto,et al.  A collaborative optimization approach to improve the design and deployment of satellite constellations , 2000 .

[91]  Jonathan Ford,et al.  The Flaw of Averages: Why We Underestimate Risk in the Face of Uncertainty , 2012 .

[92]  Olivier L. de Weck,et al.  IDENTIFYING REAL OPTIONS TO IMPROVE THE DESIGN OF ENGINEERING SYSTEMS , 2008 .

[93]  Ronald E. Turner,et al.  Designing good partial coverage satellite constellations , 1990 .

[94]  Hyung Seok Kim,et al.  Interactive Grid Computing at Lincoln Laboratory , 2006 .

[95]  Richard de Neufville,et al.  Flexibility in Engineering Design , 2011 .

[96]  Luis A. Escobar,et al.  Statistical Intervals: A Guide for Practitioners , 1991 .

[97]  Ronald A. Spores,et al.  GPIM AF-M315E Propulsion System , 2015 .

[98]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[99]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[100]  M. P. Wilkins,et al.  Flower constellation set theory part II: Secondary paths and equivalency , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[101]  Patrick M. Reed,et al.  Parallel Evolutionary Multi-Objective Optimization on Large, Heterogeneous Clusters: An Applications Perspective , 2008, J. Aerosp. Comput. Inf. Commun..

[102]  Joe Mrozinski,et al.  NASA Instrument Cost/Schedule Model , 2011 .

[103]  T. Mosher Spacecraft design using a genetic algorithm optimization approach , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[104]  Claudia Eckert,et al.  Design process improvement : a review of current practice , 2005 .

[105]  Eric Frayssinhes,et al.  Investigating new satellite constellation geometries with genetic algorithms , 1996 .

[106]  Mathieu Chaize Enhancing the Economics of Satellite Constellations via Staged Deployment and Orbital Reconfiguration by Mathieu Chaize , 2003 .

[107]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[108]  Daniel E. Hastings,et al.  On-Orbit Servicing: A New Value Proposition for Satellite Design and Operation , 2007 .

[109]  Fred J. Dietrich The Globalstar satellite cellular communication system - Design and status , 1998 .

[110]  L. Rider,et al.  Optimized polar orbit constellations for redundant earth coverage , 1985 .

[111]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[112]  Cyrus D. Jilla,et al.  Multidisciplinary Design Optimization Methodology for the Conceptual Design of Distributed Satellite Systems , 2002 .

[113]  Joseph H. Saleh,et al.  Response Surface Equations for Expendable Launch Vehicle Payload Capability , 2009 .

[114]  Thomas J. Lang,et al.  Orbital constellations which minimize revisit time. , 1984 .

[115]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[116]  Nikolaos Georgiopoulos Real Options , 2006 .

[117]  Michael Debreceni,et al.  Low cost derivative tanks for spacecraft and launch vehicles , 1999 .

[118]  Brett Newman,et al.  Determining an Earth Observation Repeat Ground Track Orbit for an Optimization Methodology , 2012 .

[119]  Rahila Patel,et al.  Multi-Objective Optimization Using Multi Parent Crossover Operators , 2011 .

[120]  David B. Spencer,et al.  Satellite Constellation Design Tradeoffs Using Multiple-Objective Evolutionary Computation , 2006 .

[121]  R. David Luders,et al.  Satellite Networks for Continuous Zonal Coverage , 1961 .

[122]  John Keesee,et al.  Spacecraft and Constellation Design for a Continuous Responsive Imaging System in Space , 2009 .

[123]  M. H. Ullock,et al.  Optimum Polar Satellite Networks for Continuous Earth Coverage , 1963 .

[124]  Douglas J Pegher,et al.  Optimizing Coverage and Revisit Time in Sparse Military Satellite Constellations: A Comparison of Traditional Approaches and Genetic Algorithms , 2004 .

[125]  Rahim Tafazolli,et al.  Modified GSC for hybrid satellite constellation , 2002 .

[126]  Anil V. Rao,et al.  A Concept for Operationally Responsive Space Mission Planning Using Aeroassisted Orbital Transfer , 2008 .

[127]  Fred Moavenzadeh,et al.  The design and development of next generation infrastructure systems , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[128]  Afreen Siddiqi,et al.  Optimal reconfiguration of satellite constellations with the auction algorithm , 2008 .

[129]  D. Beste Design of Satellite Constellations for Optimal Continuous Coverage , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[130]  James R. Wertz,et al.  Space mission engineering : the new SMAD , 2011 .

[131]  Stuart Eves,et al.  Redefining the Word "Responsive" in ORS , 2009 .

[132]  D. Mortari,et al.  AAS 05-148 Satellite Constellation Design for Earth Observation ∗ , 2005 .

[133]  D. Mortari Flower Constellations for future space missions , 2012, 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL).

[134]  V. Lakshmi Observation of the Earth and Its Environment—Survey of Missions and Sensors , 2003 .

[135]  Rahim Tafazolli,et al.  Genetic Hybrid Satellite Constellation Design , 2003 .

[136]  Kalyanmoy Deb,et al.  Multi-objective test problems, linkages, and evolutionary methodologies , 2006, GECCO.

[137]  L. Perret,et al.  PLEIADES SYSTEM ARCHITECTURE AND MAIN PERFORMANCES , 2012 .

[138]  Martin Sweeting,et al.  Commissioning of the NigeriaSat-2 High Resolution Imaging Mission , 2012 .

[139]  Kalyanmoy Deb,et al.  Self-Adaptive Parent to Mean-Centric Recombination for Real-Parameter Optimization , 2011 .

[140]  Daniele Mortari,et al.  Design of Flower Constellations for Telecommunication Services , 2011, Proceedings of the IEEE.

[141]  Yuri Ulybyshev,et al.  Satellite Constellation Design for Complex Coverage , 2008 .

[142]  P. John Clarkson,et al.  A Classification of Uncertainty for Early Product and System Design , 2007 .

[143]  R. Hopkins Long-term revisit coverage using multi-satellite constellations , 1988 .

[144]  O. Junge,et al.  Optimal Reconfiguration of Formation Flying Satellites , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[145]  Kalyanmoy Deb,et al.  Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems , 1995, Complex Syst..

[146]  F. Graziani,et al.  Polar elliptic orbits for global coverage constellations , 1994 .

[147]  Matthew P. Ferringer,et al.  Efficient and Accurate Evolutionary Multi-Objective Optimization Paradigms for Satellite Constellation Design , 2007 .

[148]  Olivier L. de Weck,et al.  Design of Long-Endurance Systems With Inherent Robustness to Partial Failures During Operations , 2012 .

[149]  J C Leachtenauer,et al.  General Image-Quality Equation: GIQE. , 1997, Applied optics.

[150]  Brett Newman,et al.  Designing a Constrained Optimal Orbit for Earth Observation Satellites Based on User Requirements , 2010 .

[151]  William A. Crossley,et al.  Using the two-branch tournament genetic algorithm for multiobjective design , 1998 .

[152]  Hyochoong Bang,et al.  Genetic Design of Target Orbits for a Temporary Reconnaissance Mission , 2009 .

[153]  I. Y. Kim,et al.  Adaptive weighted-sum method for bi-objective optimization: Pareto front generation , 2005 .

[154]  Martin Sweeting,et al.  First results from the disaster monitoring constellation (DMC) A. da Silva Curiel, L. Boland, J. Cooksley, M. Bekhti, P. Stephens, , 2005 .

[155]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[156]  H. Philip Stahl,et al.  Single-variable parametric cost models for space telescopes , 2010 .

[157]  I. A. Budianto,et al.  A collaborative optimization approach to design and deployment of a space based infrared system constellation , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[158]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[159]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[160]  Alex da Silva Curiel,et al.  Reading the Fine print from Orbit: Its Not Just about the Resolution , 2008 .

[161]  Mathias Persson,et al.  High Performance Green Propulsion (HPGP): A Flight-Proven Capability and Cost Game-Changer for Small and Secondary Satellites , 2012 .

[162]  Shigenobu Kobayashi,et al.  Multi-Parental Extension of the Unimodal Normal Distribution Crossover for Real-Coded Genetic Algorithms , 2000 .

[163]  Daniel E. Hastings,et al.  Defining changeability: Reconciling flexibility, adaptability, scalability, modifiability, and robustness for maintaining system lifecycle value , 2008 .

[164]  S. Abbondanza,et al.  Constellation Availability Concepts for Galileo , 2001 .

[165]  James R. Wertz Coverage, Responsiveness, and Accessibility for Various "Responsive Orbits" , 2005 .

[166]  Yuri Ulybyshev Near-Polar Satellite Constellations for Continuous Global Coverage , 1999 .

[167]  D. Mortari,et al.  Optimizing Flower Constellations for Global Coverage , 2012 .

[168]  Patrick M. Reed,et al.  Pareto-hypervolumes for the Reconfiguration of Satellite Constellations , 2008 .

[169]  H. Salzwedel,et al.  Link strategy for the mobile satellite system Iridium , 1996, Proceedings of Vehicular Technology Conference - VTC.

[170]  L. Rider,et al.  Circular polar constellations providing continuous single or multiple coverage above a specified latitude , 1987 .

[171]  Elizabeth Hayes A method for selecting satellite constellations to minimize revisit time , 1988 .