On De Giorgi's conjecture in dimension N>9

A celebrated conjecture due to De Giorgi states that any bounded solution of the equation u + (1 u 2 )u = 0 in R N with @yNu > 0 must be such that its level setsfu = g are all hyperplanes, at least for dimension N 8. A counterexample for N 9 has long been believed to exist. Starting from a minimal graph which is not a hyperplane, found by Bombieri, De Giorgi and Giusti in R N , N 9, we prove that for any small > 0 there is a bounded solution u (y) with @yN u > 0, which resembles tanh A t p 2 a , where t = t(y) denotes a choice of signed distance to the blown-up minimal graph := 1 . This solution is a counterexample to De Giorgi’s conjecture for N 9.

[1]  Luigi Ambrosio,et al.  Entire solutions of semilinear elliptic equations in R^3 and a conjecture of De Giorgi , 2000 .

[2]  Enrico Bombieri,et al.  Minimal cones and the Bernstein problem , 1969 .

[3]  A. Malchiodi,et al.  Boundary concentration phenomena for a singularly perturbed elliptic problem , 2002 .

[4]  Frank Pacard,et al.  From Constant mean Curvature Hypersurfaces to the Gradient Theory of Phase Transitions , 2003, math/0302160.

[5]  Nassif Ghoussoub,et al.  On De Giorgi's conjecture in dimensions 4 and 5 , 2003 .

[6]  Juncheng Wei,et al.  The Toda System and Clustering Interfaces in the Allen–Cahn equation , 2008 .

[7]  James Simons,et al.  Minimal Varieties in Riemannian Manifolds , 1968 .

[8]  R. Bass,et al.  The Liouville Property and a Conjecture of De Giorgi , 2000 .

[9]  A. Malchiodi Some new entire solutions of semilinear elliptic equations on Rn , 2009 .

[10]  Michal Kowalczyk,et al.  On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions , 2005 .

[11]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[12]  R. Monneau,et al.  Towards a counter-example to a conjecture of De Giorgi in high dimensions , 2004 .

[13]  L. Ambrosio,et al.  On a Long-Standing Conjecture of E. De Giorgi: Symmetry in 3D for General Nonlinearities and a Local Minimality Property , 2001 .

[14]  L. Simon Entire solutions of the minimal surface equation , 1989 .

[15]  F. Pacard,et al.  Constant mean curvature surfaces with Delaunay ends , 1998, math/9807039.

[16]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[17]  O. Savin Regularity of flat level sets in phase transitions , 2009 .

[18]  Juncheng Wei,et al.  The toda system and multiple-end solutions of autonomous planar elliptic problems , 2007, 0710.0640.

[19]  E. Valdinoci,et al.  THE STATE OF THE ART FOR A CONJECTURE OF DE GIORGI AND RELATED PROBLEMS , 2009 .

[20]  X. Cabré,et al.  Saddle-shaped solutions of bistable diffusion equations in all of ℝ2m , 2009 .

[21]  F. Pacard,et al.  Constant mean curvature hypersurfaces condensing on a submanifold , 2006 .

[22]  P. Sternberg The effect of a singular perturbation on nonconvex variational problems , 1988 .

[23]  A. Malchiodi,et al.  Multidimensional boundary layers for a singularly perturbed Neumann problem , 2004 .

[24]  Robert V. Kohn,et al.  Local minimisers and singular perturbations , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  L. Caffarelli,et al.  Phase transitions: Uniform regularity of the intermediate layers , 2006 .

[26]  Nicolaos Kapouleas Complete constant mean curvature surfaces in euclidean three-space , 1990 .

[27]  Yoshihiro Tonegawa,et al.  Convergence of phase-field approximations to the Gibbs–Thomson law , 2007 .

[28]  Nassif Ghoussoub,et al.  On a conjecture of De Giorgi and some related problems , 1998 .

[29]  Juncheng Wei,et al.  Concentration on curves for nonlinear Schrödinger Equations , 2007 .

[30]  Juncheng Wei,et al.  MULTIPLE-END SOLUTIONS TO THE ALLEN-CAHN EQUATION IN R2 , 2010 .

[31]  L. Caffarelli,et al.  Uniform convergence of a singular perturbation problem , 2010 .

[32]  Régis Monneau,et al.  One-dimensional symmetry of bounded entire solutions of some elliptic equations , 2000 .