The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature
暂无分享,去创建一个
Scott Croom | Karl Glazebrook | Karl Forster | Rob Sharp | Gregory B. Poole | Ted K. Wyder | David Gilbank | Chris Blake | Darren J. Croton | Sarah Brough | Michael J. Drinkwater | Russell J. Jurek | Tamara M. Davis | Warrick Couch | N. Padmanabhan | S. Brough | E. Kazin | T. Davis | B. Madore | C. Blake | C. Contreras | K. Glazebrook | W. Couch | R. Sharp | S. Croom | M. Pracy | D. Croton | M. Drinkwater | M. Colless | D. C. Martin | R. Jurek | K. Pimbblet | H. Yee | K. Forster | T. Wyder | D. Gilbank | G. Poole | J. Koda | David Woods | Carlos Contreras | D. Christopher Martin | Nikhil Padmanabhan | Matthew Colless | Barry Madore | Michael Pracy | Ben Jelliffe | I. Li | E. Wisnioski | D. Woods | Jun Koda | H.K.C. Yee | Ben Jelliffe | I-hui Li | Emily Wisnioski | Eyal A. Kazin | Mike Gladders | Kevin Pimbblet | M. Gladders | Carlos Contreras | Rob G. Sharp | H.K.C. Yee | H. Yee | R. Sharp
[1] John Dubinski,et al. THE HORIZON RUN N-BODY SIMULATION: BARYON ACOUSTIC OSCILLATIONS AND TOPOLOGY OF LARGE-SCALE STRUCTURE OF THE UNIVERSE , 2008, 0812.1392.
[2] V. Narayanan,et al. Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.
[3] Hee-Jong SeoDaniel J. Eisenstein. Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .
[4] N. Padmanabhan,et al. Reconstructing baryon oscillations , 2009, 0909.1802.
[5] S. Colombi,et al. Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.
[6] Edwin Sirko,et al. Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2007 .
[7] M. White,et al. EMBEDDING REALISTIC SURVEYS IN SIMULATIONS THROUGH VOLUME REMAPPING , 2010, 1003.3178.
[8] A. Szalay,et al. Bias and variance of angular correlation functions , 1993 .
[9] P. Peebles,et al. Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .
[10] Durham,et al. Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering , 2009, 0901.2570.
[11] Stefano Casertano,et al. A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.
[12] D. Eisenstein,et al. GALAXY BIAS AND ITS EFFECTS ON THE BARYON ACOUSTIC OSCILLATION MEASUREMENTS , 2011, 1104.1178.
[13] D. Eisenstein,et al. HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME , 2009, 0910.5005.
[14] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[15] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[16] J. Brinkmann,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.
[17] D. Eisenstein,et al. Improved Forecasts for the Baryon Acoustic Oscillations and Cosmological Distance Scale , 2007, astro-ph/0701079.
[18] R. Ellis,et al. Parameter constraints for flat cosmologies from cosmic microwave background and 2dFGRS power spectra , 2002, astro-ph/0206256.
[19] R. Nichol,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological constraints from the full shape of the clustering wedges , 2013, 1303.4396.
[20] Matias Zaldarriaga,et al. Solving large scale structure in ten easy steps with COLA , 2013, 1301.0322.
[21] What is the best way to measure baryonic acoustic oscillations , 2008, 0804.0233.
[22] A. Cuesta,et al. A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations - III. Cosmological measurements and interpretation , 2012, 1202.0092.
[23] R. Nichol,et al. THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.
[24] M. Crocce,et al. Nonlinear evolution of baryon acoustic oscillations , 2007, 0704.2783.
[25] Scott Croom,et al. The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.
[26] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[27] Karl Glazebrook,et al. The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.
[28] A. Cuesta,et al. A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.
[29] R. Smith,et al. Motion of the Acoustic Peak in the Correlation Function , 2007, astro-ph/0703620.
[30] Matthew Colless,et al. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.
[31] J. Peacock,et al. Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.
[32] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[33] E. Ribak,et al. Constrained realizations of Gaussian fields : a simple algorithm , 1991 .
[34] The detectability of baryonic acoustic oscillations in future galaxy surveys. , 2007, astro-ph/0702543.
[35] D. Wake,et al. The clustering of galaxies in the SDSS‐III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large‐scale two‐point correlation function , 2012, 1203.6616.
[36] Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.
[37] E. Kazin,et al. Improving measurements of H(z) and DA(z) by analysing clustering anisotropies , 2011, 1105.2037.
[38] Wayne Hu,et al. Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.
[39] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[40] D. Eisenstein,et al. Non-linear Structure Formation and the Acoustic Scale , 2022 .
[41] R. Nichol,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring H(z) and DA(z) at z = 0.57 with clustering wedges , 2013, 1303.4391.
[42] Daniel Thomas,et al. The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.
[43] A. Cuesta,et al. A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations – II. Fitting techniques , 2012, 1202.0091.
[44] S. Saito,et al. Forecasting the Cosmological Constraints with Anisotropic Baryon Acoustic Oscillations from Multipole Expansion , 2011, 1101.4723.
[45] Martin White,et al. Reconstructing baryon oscillations: A Lagrangian theory perspective , 2008, 0812.2905.
[46] The 2dF Galaxy Redshift Survey: The environmental dependence of galaxy star formation rates near clusters , 2002, astro-ph/0203336.
[47] P. Schneider,et al. Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.
[48] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[49] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.