The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature

We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2 < z < 1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model-independent distance measures D_V(r_s^(fid)/r_s) of 1716 ± 83, 2221 ± 101, 2516 ± 86 Mpc (68 per cent CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where D_V is the volume-averaged distance, and r_s is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 per cent accuracy measurements are equivalent to those expected from surveys with up to 2.5 times the volume of WiggleZ without reconstruction applied. These measurements are fully consistent with cosmologies allowed by the analyses of the Planck Collaboration and the Sloan Digital Sky Survey. We provide the D_V(r_s^(fid)/r_s) posterior probability distributions and their covariances. When combining these measurements with temperature fluctuations measurements of Planck, the polarization of Wilkinson Microwave Anisotropy Probe 9, and the 6dF Galaxy Survey baryonic acoustic feature, we do not detect deviations from a flat Λ cold dark matter (ΛCDM) model. Assuming this model, we constrain the current expansion rate to H_0 = 67.15 ± 0.98 km s^(−1)Mpc^(−1). Allowing the equation of state of dark energy to vary, we obtain w_(DE) = −1.080 ± 0.135. When assuming a curved ΛCDM model we obtain a curvature value of Ω_K = −0.0043 ± 0.0047.

[1]  John Dubinski,et al.  THE HORIZON RUN N-BODY SIMULATION: BARYON ACOUSTIC OSCILLATIONS AND TOPOLOGY OF LARGE-SCALE STRUCTURE OF THE UNIVERSE , 2008, 0812.1392.

[2]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[3]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[4]  N. Padmanabhan,et al.  Reconstructing baryon oscillations , 2009, 0909.1802.

[5]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[6]  Edwin Sirko,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2007 .

[7]  M. White,et al.  EMBEDDING REALISTIC SURVEYS IN SIMULATIONS THROUGH VOLUME REMAPPING , 2010, 1003.3178.

[8]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[9]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[10]  Durham,et al.  Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering , 2009, 0901.2570.

[11]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[12]  D. Eisenstein,et al.  GALAXY BIAS AND ITS EFFECTS ON THE BARYON ACOUSTIC OSCILLATION MEASUREMENTS , 2011, 1104.1178.

[13]  D. Eisenstein,et al.  HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME , 2009, 0910.5005.

[14]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[15]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[16]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.

[17]  D. Eisenstein,et al.  Improved Forecasts for the Baryon Acoustic Oscillations and Cosmological Distance Scale , 2007, astro-ph/0701079.

[18]  R. Ellis,et al.  Parameter constraints for flat cosmologies from cosmic microwave background and 2dFGRS power spectra , 2002, astro-ph/0206256.

[19]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological constraints from the full shape of the clustering wedges , 2013, 1303.4396.

[20]  Matias Zaldarriaga,et al.  Solving large scale structure in ten easy steps with COLA , 2013, 1301.0322.

[21]  What is the best way to measure baryonic acoustic oscillations , 2008, 0804.0233.

[22]  A. Cuesta,et al.  A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations - III. Cosmological measurements and interpretation , 2012, 1202.0092.

[23]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[24]  M. Crocce,et al.  Nonlinear evolution of baryon acoustic oscillations , 2007, 0704.2783.

[25]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[26]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[27]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[28]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[29]  R. Smith,et al.  Motion of the Acoustic Peak in the Correlation Function , 2007, astro-ph/0703620.

[30]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[31]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[32]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[33]  E. Ribak,et al.  Constrained realizations of Gaussian fields : a simple algorithm , 1991 .

[34]  The detectability of baryonic acoustic oscillations in future galaxy surveys. , 2007, astro-ph/0702543.

[35]  D. Wake,et al.  The clustering of galaxies in the SDSS‐III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large‐scale two‐point correlation function , 2012, 1203.6616.

[36]  Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.

[37]  E. Kazin,et al.  Improving measurements of H(z) and DA(z) by analysing clustering anisotropies , 2011, 1105.2037.

[38]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[39]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[40]  D. Eisenstein,et al.  Non-linear Structure Formation and the Acoustic Scale , 2022 .

[41]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring H(z) and DA(z) at z = 0.57 with clustering wedges , 2013, 1303.4391.

[42]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[43]  A. Cuesta,et al.  A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations – II. Fitting techniques , 2012, 1202.0091.

[44]  S. Saito,et al.  Forecasting the Cosmological Constraints with Anisotropic Baryon Acoustic Oscillations from Multipole Expansion , 2011, 1101.4723.

[45]  Martin White,et al.  Reconstructing baryon oscillations: A Lagrangian theory perspective , 2008, 0812.2905.

[46]  The 2dF Galaxy Redshift Survey: The environmental dependence of galaxy star formation rates near clusters , 2002, astro-ph/0203336.

[47]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[48]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[49]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.