Robust Equilibrated Residual Error Estimator for Diffusion Problems: Conforming Elements

This paper analyzes an equilibrated residual a posteriori error estimator for the diffusion problem. The estimator, which is a modification of those in [D. Braess and J. Schoberl, Math. Comput., 77 (2008), pp. 651-672; R. Verfurth, SIAM J. Numer. Anal., 47 (2009), pp. 3180-3194], is based on the Prager-Synge identity and on a local recovery of an equilibrated flux. Numerical results for an interface test problem show that the modification is necessary for the robustness of the estimator. When the distribution of diffusion coefficients is local quasi-monotone, it is shown theoretically that the estimator is robust with respect to the size of jumps.

[1]  D. Braess Finite Elements: Finite Elements , 2007 .

[2]  Dietrich Braess,et al.  A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .

[3]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[4]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[5]  Pekka Neittaanmäki,et al.  Reliable Methods for Computer Simulation: Error Control and a Posteriori Estimates , 2004 .

[6]  Shun Zhang,et al.  Recovery-Based Error Estimators for Interface Problems: Mixed and Nonconforming Finite Elements , 2010, SIAM J. Numer. Anal..

[7]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[8]  Martin Petzoldt,et al.  A Posteriori Error Estimators for Elliptic Equations with Discontinuous Coefficients , 2002, Adv. Comput. Math..

[9]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[10]  Shun Zhang,et al.  Recovery-Based Error Estimator for Interface Problems: Conforming Linear Elements , 2009, SIAM J. Numer. Anal..

[11]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[12]  Mark Ainsworth,et al.  A Posteriori Error Estimation for Lowest Order Raviart-Thomas Mixed Finite Elements , 2007, SIAM J. Sci. Comput..

[13]  Rüdiger Verfürth,et al.  Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.

[14]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[15]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[16]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[17]  Shun Zhang,et al.  Discontinuous Galerkin Finite Element Methods for Interface Problems: A Priori and A Posteriori Error Estimations , 2011, SIAM J. Numer. Anal..

[18]  Shun Zhang,et al.  Flux Recovery and A Posteriori Error Estimators: Conforming Elements for Scalar Elliptic Equations , 2010, SIAM J. Numer. Anal..

[19]  Kwang Y. Kim A posteriori error analysis for locally conservative mixed methods , 2007, Math. Comput..

[20]  Mark Ainsworth,et al.  Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..

[21]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..

[22]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[23]  Rüdiger Verfürth,et al.  A Note on Constant-Free A Posteriori Error Estimates , 2009, SIAM J. Numer. Anal..

[24]  Tomáš Vejchodský,et al.  Local a posteriori error estimator based on the hypercircle method Combination of the equilibrated residual method and the method of hypercircle , 2004 .

[25]  Jinchao Xu,et al.  Some Nonoverlapping Domain Decomposition Methods , 1998, SIAM Rev..

[26]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[27]  I. Babuska,et al.  Analysis of mixed methods using mesh dependent norms , 1980 .

[28]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[29]  Philippe Destuynder,et al.  Explicit error bounds for a nonconforming finite element method , 1998 .

[30]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[31]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[32]  Tomáš Vejchodský,et al.  Guaranteed and locally computable a posteriori error estimate , 2006 .