Efficient ethylene purification by a robust ethane-trapping porous organic cage

[1]  R. Krishna,et al.  A Rod-Packing Hydrogen-Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. , 2021, Angewandte Chemie.

[2]  S. Spicher,et al.  Efficient Calculation of Small Molecule Binding in Metal–Organic Frameworks and Porous Organic Cages , 2020 .

[3]  Chaohui He,et al.  Microregulation of Pore Channels in Covalent-Organic Frameworks Used for the Selective and Efficient Separation of Ethane. , 2020, ACS applied materials & interfaces.

[4]  Arne Thomas Much ado about nothing – a decade of porous materials research , 2020, Nature Communications.

[5]  Tianyu Liu,et al.  Porous organic materials offer vast future opportunities , 2020, Nature Communications.

[6]  Dan Zhao,et al.  Porous organic cages as synthetic water channels , 2020, Nature Communications.

[7]  Wenjing Wang,et al.  Reticular Chemistry in Construction of Porous Organic Cages. , 2020, Journal of the American Chemical Society.

[8]  C. Bannwarth,et al.  Extended tight‐binding quantum chemistry methods , 2020 .

[9]  Kunhui Liu,et al.  Elucidating heterogeneous photocatalytic superiority of microporous porphyrin organic cage , 2020, Nature Communications.

[10]  Stefan Grimme,et al.  Automated exploration of the low-energy chemical space with fast quantum chemical methods. , 2020, Physical chemistry chemical physics : PCCP.

[11]  Hui Wu,et al.  Engineering microporous ethane-trapping metal–organic frameworks for boosting ethane/ethylene separation , 2020 .

[12]  Zhifang Wang,et al.  Covalent organic frameworks for separation applications. , 2020, Chemical Society reviews.

[13]  R. Krishna,et al.  Selective Ethane/Ethylene Separation in a Robust Microporous Hydrogen-Bonded Organic Framework. , 2019, Journal of the American Chemical Society.

[14]  Weigang Lu,et al.  A Cage-Interconnected Metal-Organic Framework with Tailored Apertures for Efficient C2H6/C2H4 Separation under Humid Conditions. , 2019, Journal of the American Chemical Society.

[15]  M. Hirscher,et al.  Barely porous organic cages for hydrogen isotope separation , 2019, Science.

[16]  Le Yang,et al.  Multifunctional Tubular Organic Cage-Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. , 2019, Angewandte Chemie.

[17]  William R. Dichtel,et al.  Resorcinarene Cavitand Polymers for the Remediation of Halomethanes and 1,4-Dioxane. , 2019, Journal of the American Chemical Society.

[18]  P. Mukherjee,et al.  Organic Imine Cages: Molecular Marriage and Applications. , 2019, Angewandte Chemie.

[19]  Xiaolong Zou,et al.  Soft Porous Crystal Based upon Organic Cages That Exhibit Guest-Induced Breathing and Selective Gas Separation. , 2019, Journal of the American Chemical Society.

[20]  Yue‐Biao Zhang,et al.  A Robust Ethane-Trapping Metal-Organic Framework with a High Capacity for Ethylene Purification. , 2019, Journal of the American Chemical Society.

[21]  Y. Chabal,et al.  Simultaneous Trapping of C2 H2 and C2 H6 from a Ternary Mixture of C2 H2 /C2 H4 /C2 H6 in a Robust Metal-Organic Framework for the Purification of C2 H4. , 2018, Angewandte Chemie.

[22]  Wenjing Wang,et al.  Azo-Bridged Calix[4]resorcinarene-Based Porous Organic Frameworks with Highly Efficient Enrichment of Volatile Iodine , 2018, ACS Sustainable Chemistry & Engineering.

[23]  Mingyan Wu,et al.  Interconvertible vanadium-seamed hexameric pyrogallol[4]arene nanocapsules , 2018, Nature Communications.

[24]  R. Krishna,et al.  Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites , 2018, Science.

[25]  W. Zhou,et al.  Boosting Ethane/Ethylene Separation within Isoreticular Ultramicroporous Metal-Organic Frameworks. , 2018, Journal of the American Chemical Society.

[26]  M. Mastalerz Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function. , 2018, Accounts of chemical research.

[27]  Xianhui Bu,et al.  Metal–Organic Frameworks for Separation , 2018, Advanced materials.

[28]  Michael J. Bennison,et al.  High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis , 2018, Nature Communications.

[29]  R. Schröder,et al.  Shape-Persistent Tetrahedral [4+6] Boronic Ester Cages with Different Degrees of Fluoride Substitution. , 2018, Chemistry.

[30]  F. Diederich,et al.  Molecular Recognition with Resorcin[4]arene Cavitands: Switching, Halogen-Bonded Capsules, and Enantioselective Complexation. , 2018, Journal of the American Chemical Society.

[31]  M. Szymański,et al.  A chiral member of the family of organic hexameric cages. , 2017, Chemical communications.

[32]  R. Krishna,et al.  Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures , 2016 .

[33]  J. Segura,et al.  Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. , 2016, Chemical Society reviews.

[34]  A. Cooper,et al.  Three-dimensional protonic conductivity in porous organic cage solids , 2016, Nature Communications.

[35]  A. Cooper,et al.  Porous organic cages: soluble, modular and molecular pores , 2016 .

[36]  A. Cooper,et al.  Porous Organic Cage Thin Films and Molecular‐Sieving Membranes , 2016, Advanced materials.

[37]  Christopher M. Kane,et al.  Enclathration and Confinement of Small Gases by the Intrinsically 0D Porous Molecular Solid, Me,H,SiMe2. , 2016, Journal of the American Chemical Society.

[38]  R. Clowes,et al.  Porous Organic Cages for Sulfur Hexafluoride Separation , 2016, Journal of the American Chemical Society.

[39]  Y. Ko,et al.  Porphyrin Boxes: Rationally Designed Porous Organic Cages. , 2015, Angewandte Chemie.

[40]  Wei‐Xiong Zhang,et al.  Efficient purification of ethene by an ethane-trapping metal-organic framework , 2015, Nature Communications.

[41]  Christopher M. Kane,et al.  Many Simple Molecular Cavitands Are Intrinsically Porous (Zero-Dimensional Pore) Materials , 2015 .

[42]  Kenji Kobayashi,et al.  Self-Assembled Capsules Based on Tetrafunctionalized Calix[4]resorcinarene Cavitands , 2015 .

[43]  A. Cooper,et al.  Trapping virtual pores by crystal retro-engineering , 2015, Nature Chemistry.

[44]  Kenji Kobayashi,et al.  Self-assembled capsules based on tetrafunctionalized calix[4]resorcinarene cavitands. , 2015, Chemical Society reviews.

[45]  A. Cooper,et al.  Separation of rare gases and chiral molecules by selective binding in porous organic cages. , 2014, Nature materials.

[46]  Iris M. Oppel,et al.  A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. , 2014, Angewandte Chemie.

[47]  Gang Zhang,et al.  Organic cage compounds--from shape-persistency to function. , 2014, Chemical Society reviews.

[48]  Iris M. Oppel,et al.  A permanent mesoporous organic cage with an exceptionally high surface area. , 2014, Angewandte Chemie.

[49]  A. Szumna,et al.  Inherently chiral iminoresorcinarenes through regioselective unidirectional tautomerization. , 2013, The Journal of organic chemistry.

[50]  Christian J. Doonan,et al.  Kinetically controlled porosity in a robust organic cage material. , 2013, Angewandte Chemie.

[51]  P. Budd,et al.  Nanoporous Organic Polymer/Cage Composite Membranes , 2012, Angewandte Chemie.

[52]  Jian Tian,et al.  Selective CO2 Capture from Flue Gas Using Metal–Organic Frameworks―A Fixed Bed Study , 2012 .

[53]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[54]  Iris M. Oppel,et al.  Periphery-substituted [4+6] salicylbisimine cage compounds with exceptionally high surface areas: influence of the molecular structure on nitrogen sorption properties. , 2012, Chemistry.

[55]  Y. Cohen,et al.  Recent advances in hydrogen-bonded hexameric encapsulation complexes. , 2011, Chemical communications.

[56]  R. Noble,et al.  Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. , 2011, Journal of the American Chemical Society.

[57]  T. Emge,et al.  Thermodynamically controlled synthesis of a chiral tetra-cavitand nanocapsule and mechanism of enantiomerization. , 2011, Journal of the American Chemical Society.

[58]  J. Reek,et al.  Supramolecular control on chemo- and regioselectivity via encapsulation of (NHC)-Au catalyst within a hexameric self-assembled host. , 2011, Journal of the American Chemical Society.

[59]  Iris M. Oppel,et al.  A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. , 2011, Angewandte Chemie.

[60]  A. Slawin,et al.  Porous organic cages. , 2009, Nature materials.

[61]  Dylan Jayatilaka,et al.  Hirshfeld surface analysis , 2009 .

[62]  Martin Kumar Patel,et al.  Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes , 2006 .

[63]  J. L. Irwin,et al.  Superbowl container molecules. , 2004, Journal of the American Chemical Society.

[64]  J. Atwood,et al.  A chiral spherical molecular assembly held together by 60 hydrogen bonds , 1997, Nature.

[65]  S. Chong,et al.  Reticular synthesis of porous molecular 1D nanotubes and 3D networks. , 2017, Nature chemistry.

[66]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .