98 mW 10 Gbps Wireless Transceiver Chipset With D-Band CMOS Circuits

Recently, short-distance high-speed wireless communication using a 60 GHz band has been studied for mobile application. To realize higher-speed wireless communication while maintaining low power consumption for mobile application D band (110-170 GHz) is promising since it can potentially provide a wider frequency band. Thus, we have studied D-band CMOS circuits to realize low-power ultrahigh-speed wireless communication. In the D band, however, since no sufficient device model is provided, research generally has to start from device modeling. In this paper, a design procedure for D-band CMOS circuits is overviewed from the device layer to the system layer, where the architecture is optimized to realize both low power and high data transfer rate. Finally, a 10 Gbps wireless transceiver with a power consumption of 98 mW is demonstrated using the 135 GHz band.

[1]  P. Chevalier,et al.  $D$ -Band Total Power Radiometer Performance Optimization in an SiGe HBT Technology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[2]  S. Voinigescu,et al.  Device and IC Characterization Above 100 GHz , 2012, IEEE Microwave Magazine.

[3]  Win Chaivipas,et al.  A 60-GHz 16QAM/8PSK/QPSK/BPSK Direct-Conversion Transceiver for IEEE802.15.3c , 2011, IEEE Journal of Solid-State Circuits.

[4]  B. Heydari,et al.  Millimeter-Wave Devices and Circuit Blocks up to 104 GHz in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[5]  N. Kukutsu,et al.  10-Gbit/s Wireless Link Using InP HEMT MMICs for Generating 120-GHz-Band Millimeter-Wave Signal , 2009, IEEE Transactions on Microwave Theory and Techniques.

[6]  T.J. Yeh,et al.  Broadband small-signal model and parameter extraction for deep sub-micron MOSFETs valid up to 110 GHz , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[7]  Ryuichi Fujimoto,et al.  140GHz CMOS amplifier with group delay variation of 10.2ps and 0.1dB bandwidth of 12GHz , 2011, IEICE Electron. Express.

[8]  F.X. Pengg Direct parameter extraction on RF-CMOS , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[9]  Laurent Dussopt,et al.  A 65-nm CMOS Fully Integrated Transceiver Module for 60-GHz Wireless HD Applications , 2011, IEEE Journal of Solid-State Circuits.

[10]  Minoru Fujishima,et al.  1Gbps/ch 60GHz CMOS multichannel millimeter-wave repeater , 2010, 2010 Symposium on VLSI Circuits.

[11]  P. Chevalier,et al.  A 140-GHz double-sideband transceiver with amplitude and frequency modulation operating over a few meters , 2009, 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[12]  Patrick Reynaert,et al.  A 120GHz 10Gb/s phase-modulating transmitter in 65nm LP CMOS , 2011, 2011 IEEE International Solid-State Circuits Conference.

[13]  Kosuke Katayama,et al.  135 GHz 98 mW 10 Gbps ASK transmitter and receiver chipset in 40 nm CMOS , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[14]  James Parker,et al.  A 60GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications , 2011, 2011 IEEE International Solid-State Circuits Conference.

[15]  Minoru Fujishima,et al.  36mW 63GHz CMOS differential low-noise amplifier with 14GHz bandwidth , 2009, 2009 Symposium on VLSI Circuits.

[16]  A. Tomkins,et al.  Nanoscale CMOS Transceiver Design in the 90–170-GHz Range , 2009, IEEE Transactions on Microwave Theory and Techniques.

[17]  Uroschanit Yodprasit,et al.  A 120-GHz Transmitter and Receiver Chipset with 9-Gbps Data Rate Using 65-nm CMOS Technology , 2012 .

[18]  Kenichi Okada,et al.  A full 4-channel 60 GHz direct-conversion transceiver , 2013, 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC).

[19]  John R. Long,et al.  A 60GHz-band 2×2 phased-array transmitter in 65nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[20]  Ryuichi Fujimoto,et al.  A 120 GHz/140 GHz Dual-Channel OOK Receiver Using 65 nm CMOS Technology , 2013, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[21]  Ali M. Niknejad,et al.  A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[22]  Patrick Reynaert,et al.  Design, implementation and measurement of a 120 GHz 10 Gb/s phase-modulating transmitter in 65 nm LP CMOS , 2013 .

[23]  Minoru Fujishima,et al.  60GHz-Pulse Detector Based on CMOS Nonlinear Amplifier , 2009, 2009 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[24]  A. Tomkins,et al.  A 1.2V, 140GHz receiver with on-die antenna in 65nm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[25]  Ali Hajimiri,et al.  A millimeter-wave intra-connect solution , 2010, ISSCC 2010.

[26]  Sorin P. Voinigescu,et al.  A 95GHz Receiver with Fundamental-Frequency VCO and Static Frequency Divider in 65nm Digital CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[27]  Piet Wambacq,et al.  A wideband beamformer for a phased-array 60GHz receiver in 40nm digital CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[28]  Davide Guermandi,et al.  A wideband mm-Wave CMOS receiver for Gb/s communications employing interstage coupled resonators , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[29]  Ryuichi Fujimoto,et al.  A 120 GHz / 140 GHz dual-channel ASK receiver using standard 65 nm CMOS technology , 2011, 2011 6th European Microwave Integrated Circuit Conference.

[30]  Tong Wang,et al.  A 2-Gb/s Throughput CMOS Transceiver Chipset With In-Package Antenna for 60-GHz Short-Range Wireless Communication , 2012, IEEE Journal of Solid-State Circuits.

[31]  Mizuki Motoyoshi,et al.  A 120GHz/140GHz Dual-Channel OOK Receiver Using 65nm CMOS Technology , 2013 .

[32]  Kosuke Katayama,et al.  Bias-Voltage-Dependent Subcircuit Model for Millimeter-Wave CMOS Circuit , 2012, IEICE Trans. Electron..

[33]  Corrado Carta,et al.  A 1.1V 150GHz amplifier with 8dB gain and +6dBm saturated output power in standard digital 65nm CMOS using dummy-prefilled microstrip lines , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[34]  R. Ishikawa,et al.  Group delay equalised monolithic microwave integrated circuit amplifier for ultra-wideband based on right/left-handed transmission line design approach , 2009 .

[35]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[36]  M. Fujishima,et al.  19.2mW 2Gbps CMOS pulse receiver for 60GHz band wireless communication , 2008, 2008 IEEE Symposium on VLSI Circuits.

[37]  Ali M. Niknejad,et al.  A 65 nm CMOS 4-Element Sub-34 mW/Element 60 GHz Phased-Array Transceiver , 2011, IEEE Journal of Solid-State Circuits.

[38]  Yo-Sheng Lin,et al.  A 4.9-dB NF 53.5–62-GHz micro-machined CMOS wideband LNA with small group-delay-variation , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[39]  M. Fujishima,et al.  Bond-based design for MMW CMOS circuit optimization , 2008, 2008 Asia-Pacific Microwave Conference.

[40]  T. Kosugi,et al.  120-GHz Tx/Rx chipset for 10-Gbit/s wireless applications using 0.1 /spl mu/m-gate InP HEMTs , 2004, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004..

[41]  Uroschanit Yodprasit,et al.  Device Modeling Techniques for High-Frequency Circuits Design Using Bond-Based Design at over 100 GHz , 2011, IEICE Trans. Electron..

[42]  Minoru Fujishima,et al.  High-Attenuation Power Line for Wideband Decoupling , 2009, IEICE Trans. Electron..