The significance of the subplate for evolution and developmental plasticity of the human brain

[1]  N. Barrickman,et al.  Encephalization, expensive tissues, and energetics: An examination of the relative costs of brain size in strepsirrhines. , 2010, American journal of physical anthropology.

[2]  S. Herculano‐Houzel Scaling of Brain Metabolism with a Fixed Energy Budget per Neuron: Implications for Neuronal Activity, Plasticity and Evolution , 2011, PloS one.

[3]  G. Šimić,et al.  Extraordinary neoteny of synaptic spines in the human prefrontal cortex , 2011, Proceedings of the National Academy of Sciences.

[4]  Suzana Herculano-Houzel,et al.  Coordinated Scaling of Cortical and Cerebellar Numbers of Neurons , 2010, Front. Neuroanat..

[5]  K. Milton,et al.  A hypothesis to explain the role of meat‐eating in human evolution , 1999 .

[6]  I. Kostović,et al.  Nitrinergic neurons in the developing and adult human telencephalon: Transient and permanent patterns of expression in comparison to other mammals , 1999, Microscopy research and technique.

[7]  C. V. van Schaik,et al.  Costs of encephalization: the energy trade-off hypothesis tested on birds. , 2006, Journal of human evolution.

[8]  Heiko J Luhmann,et al.  The subplate and early cortical circuits. , 2010, Annual review of neuroscience.

[9]  C. Webber,et al.  Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia , 2013, Proceedings of the National Academy of Sciences.

[10]  F. Aboitiz,et al.  Ancestry of the Mammalian Preplate and its Derivatives: Evolutionary Relicts or Embryonic Adaptations? , 2005, Reviews in the neurosciences.

[11]  N. Ramnani The primate cortico-cerebellar system: anatomy and function , 2006, Nature Reviews Neuroscience.

[12]  William B. Levy,et al.  Energy Efficient Neural Codes , 1996, Neural Computation.

[13]  C. Kuzawa,et al.  Metabolic correlates of hominid brain evolution. , 2003, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[14]  Z. Molnár,et al.  Gene expression analysis of the embryonic subplate. , 2012, Cerebral cortex.

[15]  S. Leigh Evolution of human growth , 2001 .

[16]  C. V. van Schaik,et al.  The Expensive Brain: a framework for explaining evolutionary changes in brain size. , 2009, Journal of human evolution.

[17]  Milos Judas,et al.  Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants , 2006, Developmental medicine and child neurology.

[18]  H. Kennedy,et al.  Comparative aspects of cerebral cortical development , 2006, The European journal of neuroscience.

[19]  C. V. van Schaik,et al.  Metabolic costs of brain size evolution , 2006, Biology Letters.

[20]  M. Genoud Comparative studies of basal rate of metabolism in primates , 2003 .

[21]  D. Crews Human senescence, evolutionary and biocultural perspectives , 2003 .

[22]  R. Martin,et al.  Endocranial volumes of primate species: scaling analyses using a comprehensive and reliable data set. , 2008, Journal of human evolution.

[23]  G. Roth,et al.  Evolution of the brain and intelligence , 2005, Trends in Cognitive Sciences.

[24]  L. Vinicius Human encephalization and developmental timing. , 2005, Journal of human evolution.

[25]  Robert Barton,et al.  Comparative Primate Socioecology: The evolutionary ecology of the primate brain , 1999 .

[26]  D. Crews,et al.  Parental investment, late reproduction, and increased reserve capacity are associated with longevity in humans. , 2006, Journal of physiological anthropology.

[27]  A. Hurtado,et al.  Life in the slow lane revisited: ontogenetic separation between chimpanzees and humans. , 2006, American journal of physical anthropology.

[28]  G. Sacher,et al.  The Role of Brain Maturation in the Evolution of the Primates , 1982 .

[29]  M. Pletikos,et al.  Early history of subplate and interstitial neurons: from Theodor Meynert (1867) to the discovery of the subplate zone (1974) , 2010, Journal of anatomy.

[30]  M. L. Robertson,et al.  Evolutionary perspectives on human nutrition: The influence of brain and body size on diet and metabolism , 1994, American journal of human biology : the official journal of the Human Biology Council.

[31]  S. Leigh Brain growth, life history, and cognition in primate and human evolution , 2004, American journal of primatology.

[32]  Robert O Deaner,et al.  Overall Brain Size, and Not Encephalization Quotient, Best Predicts Cognitive Ability across Non-Human Primates , 2007, Brain, Behavior and Evolution.

[33]  S. Herculano‐Houzel,et al.  Cellular scaling rules for rodent brains , 2006, Proceedings of the National Academy of Sciences.

[34]  M. Hatten,et al.  Gene Expression Profiling of Preplate Neurons Destined for the Subplate: Genes Involved in Transcription, Axon Extension, Neurotransmitter Regulation, Steroid Hormone Signaling, and Neuronal Survival , 2009, Cerebral cortex.

[35]  W. Leonard,et al.  Comparative primate energetics and hominid evolution. , 1997, American journal of physical anthropology.

[36]  Michael E. Pereira,et al.  Primate life histories and socioecology , 2003 .

[37]  S. Herculano‐Houzel The Human Brain in Numbers: A Linearly Scaled-up Primate Brain , 2009, Front. Hum. Neurosci..

[38]  W. Atchley,et al.  Genetics of Growth Predict Patterns of Brain-Size Evolution , 1985, Science.

[39]  Richard W. Wrangham,et al.  Energetic consequences of thermal and nonthermal food processing , 2011, Proceedings of the National Academy of Sciences.

[40]  S. Herculano‐Houzel Neuronal scaling rules for primate brains: the primate advantage. , 2012, Progress in brain research.

[41]  Richard W Wrangham,et al.  The energetic significance of cooking. , 2009, Journal of human evolution.

[42]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[43]  P. Rakić,et al.  Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain , 1990, The Journal of comparative neurology.

[44]  P. C. Lee,et al.  Ecology and energetics of encephalization in hominid evolution. , 1991, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[45]  B. Bogin Childhood, adolescence, and longevity: A multilevel model of the evolution of reserve capacity in human life history , 2009, American journal of human biology : the official journal of the Human Biology Council.

[46]  J. Durnin,et al.  Human energy expenditure. , 1955, Physiological reviews.

[47]  J. Fish,et al.  Dietary constraints on encephalization in primates. , 2003, American journal of physical anthropology.

[48]  Dmitri B Chklovskii,et al.  A cost-benefit analysis of neuronal morphology. , 2008, Journal of neurophysiology.

[49]  Jon H. Kaas,et al.  Updated Neuronal Scaling Rules for the Brains of Glires (Rodents/Lagomorphs) , 2011, Brain, Behavior and Evolution.

[50]  Diana K. Sarko,et al.  Neuroanatomy Original Research Article Cellular Scaling Rules of Insectivore Brains , 2022 .

[51]  H. Uylings,et al.  Neuronal development in human prefrontal cortex in prenatal and postnatal stages. , 1990, Progress in brain research.

[52]  Roberto Lent,et al.  Isotropic Fractionator: A Simple, Rapid Method for the Quantification of Total Cell and Neuron Numbers in the Brain , 2005, The Journal of Neuroscience.

[53]  Ivica Kostović,et al.  Transient patterns of cortical lamination during prenatal life: Do they have implications for treatment? , 2007, Neuroscience & Biobehavioral Reviews.

[54]  C. Hemelrijk,et al.  Problems of allometric scaling analysis: examples from mammalian reproductive biology , 2005, Journal of Experimental Biology.

[55]  P. Rakic Evolution of the neocortex: Perspective from developmental biology , 2010 .

[56]  Kate E. Jones,et al.  Affording Larger Brains: Testing Hypotheses of Mammalian Brain Evolution on Bats , 2004, The American Naturalist.

[57]  G. Sacher,et al.  Relation of Gestation Time to Brain Weight for Placental Mammals: Implications for the Theory of Vertebrate Growth , 1974, The American Naturalist.

[58]  Brian Hare,et al.  Bonobos Exhibit Delayed Development of Social Behavior and Cognition Relative to Chimpanzees , 2010, Current Biology.

[59]  I. Kostović,et al.  Prenatal development of nucleus basalis complex and related fiber systems in man: A histochemical study , 1986, Neuroscience.

[60]  S. Herculano‐Houzel The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost , 2012, Proceedings of the National Academy of Sciences.

[61]  Suzana Herculano-Houzel,et al.  Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution , 2012, Proceedings of the National Academy of Sciences.

[62]  Richard W. Wrangham,et al.  The Raw and the Stolen , 1999, Current Anthropology.

[63]  Henry Kennedy,et al.  Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. , 2002, Cerebral cortex.

[64]  Carla J. Shatz,et al.  Subplate Neurons Regulate Maturation of Cortical Inhibition and Outcome of Ocular Dominance Plasticity , 2006, Neuron.

[65]  Latha Srinivasan,et al.  Subplate in the developing cortex of mouse and human , 2010, Journal of anatomy.

[66]  I. Kostović,et al.  The development of synapses in cerebral cortex of the human fetus. , 1973, Brain research.

[67]  D. Wildman,et al.  Molecular evolution of aerobic energy metabolism in primates. , 2001, Molecular phylogenetics and evolution.

[68]  N. Jovanov-Milošević,et al.  Populations of subplate and interstitial neurons in fetal and adult human telencephalon , 2010, Journal of anatomy.

[69]  L. Aiello,et al.  The Expensive-Tissue Hypothesis: The Brain and the Digestive System in Human and Primate Evolution , 1995, Current Anthropology.

[70]  G. Brown,et al.  Cellular energy utilization and molecular origin of standard metabolic rate in mammals. , 1997, Physiological reviews.

[71]  J. Kaas,et al.  Cellular scaling rules for primate brains , 2007, Proceedings of the National Academy of Sciences.

[72]  R. Martin The evolution of human reproduction: a primatological perspective. , 2007, American journal of physical anthropology.

[73]  M. Hofman Encephalization and the evolution of longevity in mammals , 1993 .

[74]  H. Supèr,et al.  The early differentiation of the neocortex: a hypothesis on neocortical evolution. , 2001, Cerebral cortex.

[75]  K. Milton,et al.  Foraging behaviour and the evolution of primate intelligence. , 1988 .

[76]  E. Armstrong Brains, bodies and metabolism. , 1990, Brain, behavior and evolution.

[77]  I. Kostović,et al.  Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study , 1988, The Journal of comparative neurology.

[78]  Kim Hill,et al.  A theory of human life history evolution: Diet, intelligence, and longevity , 2000 .

[79]  B. Bogin,et al.  The growth of humanity , 2001 .

[80]  B. Bogin,et al.  Evolutionary hypotheses for human childhood , 1997 .

[81]  S. Herculano‐Houzel Encephalization, Neuronal Excess, and Neuronal Index in Rodents , 2007, Anatomical record.

[82]  J. Kaas,et al.  Cellular Scaling Rules for the Brains of an Extended Number of Primate Species , 2010, Brain, Behavior and Evolution.

[83]  Wenbo Xu,et al.  Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Matthew A. Zapala,et al.  Elevated gene expression levels distinguish human from non-human primate brains , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Michael J. Berry,et al.  Metabolically Efficient Information Processing , 2001, Neural Computation.

[86]  On Diet, Energy Metabolism, and Brain Size in Human Evolution , 1996, Current Anthropology.

[87]  P S Goldman-Rakic,et al.  Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain , 1983, The Journal of comparative neurology.

[88]  M. Marín‐padilla Dual origin of the mammalian neocortex and evolution of the cortical plate , 1978, Anatomy and Embryology.

[89]  M. Holliday Body Composition and Energy Needs during Growth , 1978 .

[90]  S. Herculano‐Houzel Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size , 2011, Annals of the New York Academy of Sciences.

[91]  K. Milton,et al.  Animal Source Foods to Improve Micronutrient Nutrition and Human Function in Developing Countries The Critical Role Played by Animal Source Foods in Human (Homo) Evolution , 2003 .

[92]  Timothy Edward John Behrens,et al.  The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. , 2006, Cerebral cortex.

[93]  Milos Judas,et al.  Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants , 2002, The Anatomical record.

[94]  Suzana Herculano-Houzel,et al.  Not All Brains Are Made the Same: New Views on Brain Scaling in Evolution , 2011, Brain, Behavior and Evolution.

[95]  J. Mink,et al.  Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. , 1981, The American journal of physiology.

[96]  E. Charnov,et al.  Grandmothering, menopause, and the evolution of human life histories. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[97]  H. Kennedy,et al.  G1 Phase Regulation, Area-Specific Cell Cycle Control, and Cytoarchitectonics in the Primate Cortex , 2005, Neuron.

[98]  I. Kostović,et al.  Development of the human fetal auditory cortex: growth of afferent fibres. , 1983, Acta anatomica.

[99]  Pasko Rakic,et al.  Renewed focus on the developing human neocortex , 2010, Journal of anatomy.

[100]  C. Shatz,et al.  The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. , 1994, Annual review of neuroscience.

[101]  M. Gurven,et al.  Energetic demand of multiple dependents and the evolution of slow human growth , 2006, Proceedings of the Royal Society B: Biological Sciences.

[102]  R A Barton,et al.  The evolution of the cortico-cerebellar complex in primates: anatomical connections predict patterns of correlated evolution. , 2003, Journal of human evolution.

[103]  Brian Hare,et al.  Great apes prefer cooked food. , 2008, Journal of human evolution.

[104]  E. Armstrong Relative brain size and metabolism in mammals. , 1983, Science.

[105]  Z. Molnár,et al.  Hypothesis on the Dual Origin of the Mammalian Subplate , 2011, Front. Neuroanat..

[106]  L. Krubitzer,et al.  Comparative aspects of subplate zone studied with gene expression in sauropsids and mammals. , 2011, Cerebral cortex.

[107]  Jörn Diedrichsen,et al.  Evolution of the cerebellar cortex: The selective expansion of prefrontal-projecting cerebellar lobules , 2010, NeuroImage.

[108]  R. Passingham,et al.  Rates of brain development in mammals including man. , 1985, Brain, behavior and evolution.

[109]  R. Martin,et al.  Relative brain size and basal metabolic rate in terrestrial vertebrates , 1981, Nature.

[110]  B. Bogin,et al.  Evolutionary perspective on human growth. , 1999, Annual review of anthropology.

[111]  Jon H. Kaas,et al.  Gorilla and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution , 2011, Brain, Behavior and Evolution.

[112]  Milos Judas,et al.  The development of the subplate and thalamocortical connections in the human foetal brain , 2010, Acta paediatrica.

[113]  M. L. Robertson,et al.  Nutritional requirements and human evolution: A bioenergetics model , 1992, American journal of human biology : the official journal of the Human Biology Council.

[114]  Lana Vasung,et al.  Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches , 2012, Brain Structure and Function.

[115]  M A Hofman,et al.  Evolution of brain size in neonatal and adult placental mammals: a theoretical approach. , 1983, Journal of theoretical biology.