A Smoothed Perturbation Analysis of Parisian Options
暂无分享,去创建一个
[1] Vu,et al. European Options Sensitivities via Monte Carlo Techniques , 2013 .
[2] E. Benhamou. Optimal Malliavin Weighting Function for the Computation of the Greeks , 2003 .
[3] Pierre-Louis Lions,et al. Applications of Malliavin calculus to Monte Carlo methods in finance , 1999, Finance Stochastics.
[4] Michael Schr oder,et al. Brownian excursions an Parisian barrier options: a note , 2002 .
[5] Pricing Parisians and barriers by hitting time simulation , 2008 .
[6] B. Heidergott,et al. A Smoothed Perturbation Analysis Approach to Parisian Options , 2013 .
[7] L. Jeff Hong,et al. Estimating Quantile Sensitivities , 2009, Oper. Res..
[8] Céline Labart,et al. Pricing Double Barrier Parisian Options Using Laplace Transforms , 2009 .
[9] Yuh-Dauh Lyuu,et al. Unbiased and efficient Greeks of financial options , 2011, Finance Stochastics.
[10] P. Glasserman,et al. Estimating security price derivatives using simulation , 1996 .
[11] Michael Schröder. Brownian excursions and Parisian barrier options: a note , 2002 .
[12] P. Boyle,et al. Monte Carlo methods for pricing discrete Parisian options , 2009 .
[13] Michael C. Fu,et al. Conditional Monte Carlo , 1997 .
[14] M. Fu. What you should know about simulation and derivatives , 2008 .
[15] Jian-Qiang Hu,et al. Conditional Monte Carlo: Gradient Estimation and Optimization Applications , 2012 .
[16] Pierre-Louis Lions,et al. Applications of Malliavin calculus to Monte-Carlo methods in finance. II , 2001, Finance Stochastics.
[17] Michael A. Zazanis,et al. Convergence Rates of Finite-Difference Sensitivity Estimates for Stochastic Systems , 1993, Oper. Res..
[18] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[19] L. Jeff Hong,et al. Kernel Estimation of the Greeks for Options with Discontinuous Payoffs , 2011, Oper. Res..