의료영상 분할을 위한 3차원 능동 모양 모델

본 논문은 관심 객체 분할을 위한 통계적 모양 모델에 기반한 3차원 능동 모양 모델링 기법을 제안한다. 3차원 모양 모델을 만들려면 포인트 분산 모델(PDM)의 생성이 필수적인데, 이를 위해서는 모든 학습(training) 데이터에 대응하는 특징점(landmark)을 잘 선택해야 한다. 현재까지도 3차원 데이터에서 대응하는 특징점을 선택하는 방법은 주로 수동적으로 선택하거나 2차원 기반 기법 또는 제한된 3차원 기법이 사용되고 있다. 본 논문에서는 최근에 제안된 “3차원 통계적 모양 모델의 자동생성 기법”의 거리 변환(distance transform)과 사면체(tetrahedron) 알고리듬을 사용하여 3차원 통계적 모양 모델을 생성하고, 2차원 능동 모양 모델의 모양 모델 학습과 그레이레벨(gray-level) 모델 학습을 개선하여 확장하고, 스케일(scale)과 그레이레벨 모델을 결합한 3차원 능동 모양 모델 알고리듬으로 관심 객체를 분할한다. 본 논문에서는 제안한 방법을 영역 기반, 윤곽선 기반 기법 및 2차원 능동모양모델 기법과 그 성능을 비교하여 평가했다.