The application of fluorescent probes in membrane studies

Fluorescence has been used in biochemical studies for many years but only recently has the information content and the practical applicability of the fluorescence method been fully realized. Following the early studies of Newton (1954) and Weber (11954) and after the initial utilization of fluorescent probes by Chance and coworkers (Azzi et al. 1969) and Tasaki et al. (1968), in the study of membranes, the use of fluorescence to provide structural information at microscopic or molecular levels in biological membranes has become widespread. widespread. The application of the fluorescence technique to biological systems has progressed parallel to the development of a theoretical basis for fluorescence data interpretation and the synthesis of a large number of fluorescent probes, organic molecules having fluorescence characteristics that are dependent on their environment.

[1]  A. Azzi,et al.  Redistribution of the electrical charge of the mitochondrial membrane during energy conservation. , 1969, Biochemical and biophysical research communications.

[2]  D. E. Goldman POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.

[3]  F. Conti,et al.  Changes in Extrinsic Fluorescence in Squid Axons during Voltage-Clamp , 1970, Science.

[4]  D. Papahadjopoulos,et al.  Role of cholesterol in membranes. Effects on phospholipid-protein interactions, membrane permeability and enzymatic activity. , 1973, Biochimica et biophysica acta.

[5]  B. A. Newton Site of action of polymyxin on Pseudomonas aeruginosa: antagonism by cations. , 1954, Journal of general microbiology.

[6]  H. Vainio,et al.  Energy-dependent changes in membranes of Rhodospirillum rubrum chromatophores as measured by 8-anilino-naphthalene-1-sulfonic acid. , 1972, European journal of biochemistry.

[7]  G. Azzone,et al.  The problem of cation-binding sites in the energized membrane of intact mitochondria. , 1973, European journal of biochemistry.

[8]  G. Weber Polarization of the fluorescence of macromolecules. II. Fluorescent conjugates of ovalbumin and bovine serum albumin. , 1952, The Biochemical journal.

[9]  M. Wilkins X‐RAY STUDIES OF MEMBRANES AND MODEL SYSTEMS , 1972, Annals of the New York Academy of Sciences.

[10]  J. Changeux,et al.  Some structural properties of excitable membranes labelled by fluorescent probes , 1970, FEBS letters.

[11]  A. Caswell,et al.  Selectivity of cation chelation to tetracyclines: evidence for special conformation of calcium chelate. , 1971, Biochemical and biophysical research communications.

[12]  C. Scandella,et al.  Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G. Azzone,et al.  Active transport and binding in mitochondria. , 1973, Biochimica et biophysica acta.

[14]  C. Lee,et al.  Fluorescent labelling of the mitochondrial inner membrane , 1973 .

[15]  G. Azzone,et al.  The Membrane Structure Studied with Cationic Dyes , 1972 .

[16]  A. Azzi,et al.  Interaction of ethidium with the mitochondrial membrane: cooperative binding and energy-linked changes. , 1971, Biochemical and biophysical research communications.

[17]  J. Vanderkooi,et al.  Sarcoplasmic reticulum. XVI. The permeability of phosphatidyl choline vesicles for calcium. , 1971, Archives of biochemistry and biophysics.

[18]  N. Birdsall,et al.  Measurement of fast lateral diffusion of lipids in vesicles and in biological membranes by 1 H nuclear magnetic resonance. , 1973, Biochemistry.

[19]  S. Kinsky,et al.  Effects of temperature and cholesterol on the glucose permeability of liposomes prepared with natural and synthetic lecithins. , 1968, Biochimica et biophysica acta.

[20]  W. G. Martin,et al.  The fluorescence behaviour of 1-anilino-8-naphthalene sulphonate in phospholipid and natural membranes. , 1972, Biochemical and biophysical research communications.

[21]  D. Koblin,et al.  Quenching of 1-anilinonaphthalene-8-sulfonate fluorescence by a spin-labeled local anesthetic: a membrane phenomenon. , 1973, Biochemical and Biophysical Research Communications - BBRC.

[22]  B. Chance The nature of electron transfer and energy coupling reactions , 1972, FEBS letters.

[23]  T. Takenaka,et al.  Resting and action potential of intracellularly perfused squid giant axon. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[24]  L. Eilermann Oxidative phosphorylation in Azotobacter vinelandii. Atebrin as a fluorescent probe for the energized state. , 1970, Biochimica et biophysica acta.

[25]  A. Caswell,et al.  Fluorescence changes of ethidium bromide on binding to erythrocyte and mitochondrial membranes. , 1969, Biochimica et biophysica acta.

[26]  G. Weber,et al.  Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. , 1970, Biochemistry.

[27]  I. Tasaki,et al.  Transient changes in extrinsic fluorescence of nerve produced by electric stimulation. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. L. Bhaumik,et al.  Lattice Work Performed by Excited Molecules , 1963 .

[29]  E Wanke,et al.  Fluorescence signals in ANS-stained squid giant axons during voltage-clamp , 1971, Biophysik.

[30]  G. Szabó,et al.  Freezing and Melting of Lipid Bilayers and the Mode of Action of Nonactin, Valinomycin, and Gramicidin , 1971, Science.

[31]  P. Williams,et al.  The Interaction of Positively and Negatively Charged Dye Molecules with Submitochondrial Particles during Oxidative Phosphorylation , 1973 .

[32]  F. Perrin Polarisation de la lumière de fluorescence. Vie moyenne des molécules dans l'etat excité , 1926 .

[33]  M. Avron,et al.  On the mechanism of the energy‐dependent quenching of atebrin fluorescence in isolated chloroplasts , 1971, FEBS letters.

[34]  A. Azzi,et al.  Energy transduction in mitochondrial fragments. Interaction of the membrane with acridine dyes. , 1971, European journal of biochemistry.

[35]  C. Crifó,et al.  Fluorescence of lucensomycin upon binding to erythrocyte ghosts , 1971, FEBS letters.

[36]  H. Vainio,et al.  Energy‐linked changes of the membrane of Rhodospirillum rubrum chromatophores detected by the fluorescent probe 8‐anilinonaphthalene‐1‐sulfonic acid , 1971, FEBS letters.

[37]  L. Packer,et al.  Quantitation of the energetic state in mitochondria and submitochondrial vesicles with 8-anilino-1-naphthalene sulfonic acid , 1970 .

[38]  E. Sackmann,et al.  Lateral diffusion in the hydrophobic region of membranes: use of pyrene excimers as optical probes. , 1974, Biochimica et biophysica acta.

[39]  G. Edelman,et al.  Fluorescent probes for conformational states of proteins. I. Mechanism of fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate, a hydrophobic probe. , 1966, Biochemistry.

[40]  A. Caswell,et al.  Kinetics of transport of divalent cations across sarcoplasmic reticulum vesicles induced by ionophores. , 1972, Biochemical and biophysical research communications.

[41]  W. Hasselbach,et al.  Studies on the fluorescence of 1-anilino-8-naphthalenesulfonate by the membranes of the sarcoplasmic reticulum. , 1973, European journal of biochemistry.

[42]  R. H. Sprague,et al.  Color and Constitution. X.1 Absorption of the Merocyanines2 , 1951 .

[43]  B. Witholt,et al.  [87] Fluorescence measurements , 1967 .

[44]  G. Radda,et al.  On the nature of the energy-linked guantum yield change in anilino-naphthalene sulphonate fluorescence in submitochondrial particles. , 1972, Biochimica et biophysica acta.

[45]  J. Tager Electron transport and energy conservation , 1970 .

[46]  G. R. Penzer 1-anilinonaphthalene-8-sulphonate. The dependence of emission spectra on molecular conformation studied by fluorescence and proton-magnetic resonance. , 1972, European journal of biochemistry.

[47]  J. Vanderkooi,et al.  Physical properties of biological membranes determined by the fluorescence of the calcium ionophore A23187. , 1974, Archives of biochemistry and biophysics.

[48]  J. Vanderkooi,et al.  Sarcoplasmic reticulum: XIII. Changes in the fluorescence of 8-anilino-1-naphthalene sulfonate during Ca2 transport☆ , 1971 .

[49]  C. Gitler,et al.  INTERACTION OF FLUORESCENT PROBES WITH HEMOGLOBIN FREE ERYTHROCYTE MEMBRANES , 1971 .

[50]  C. Gitler,et al.  Surface potential and energy-coupling in bioenergy-conserving membrane systems , 1973, Journal of bioenergetics.

[51]  W. Lesslauer,et al.  X-ray diffraction studies of lecithin bimolecular leaflets with incorporated fluorescent probes. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[52]  C. Gitler,et al.  Microviscosity of the cell membrane. , 1972, Biochimica et biophysica acta.

[53]  T. F. Hunter,et al.  Absorption and emission studies of solubilization in micelles. Part 1.—Pyrene in long-chain cationic micelles , 1972 .

[54]  H. Kuhn Synthetic Lipid- and Lipoprotein Membranes , 1971 .

[55]  L. Brand,et al.  THE EFFECTS OF CHEMICAL ENVIRONMENT ON FLUORESCENCE PROBES , 1971 .

[56]  J. Changeux,et al.  Interaction of a fluorescent ligand with membrane-bound cholinergic receptor from Torpedo marmorata. , 1973, Biochemistry.

[57]  U. Cogan,et al.  Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. , 1973, Biochemistry.

[58]  E. Lippert,et al.  Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand , 1957, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[59]  T. Chang,et al.  Aurovertin, a fluorescent probe of conformational change in beef heart mitochondrial adenosine triphosphatase. , 1973, The Journal of biological chemistry.

[60]  Lester Packer,et al.  Current topics in bioenergetics , 1966 .

[61]  J R Barrio,et al.  A Fluorescent Modification of Adenosine Triphosphate with Activity in Enzyme Systems: 1,N6-Ethenoadenosine Triphosphate , 1972, Science.

[62]  W. Cramer,et al.  Response of an Escherichia coli-Bound Fluorescent Probe to Colicin E1 , 1970, Journal of bacteriology.

[63]  Cramer Wa,et al.  Properties of the fluorescence probe response associated with the transmission mechanism of colicin E1. , 1973 .

[64]  K. van Dam,et al.  The influence of diffusion potentials across liposomal membranes on the fluorescence intensity of 1-anilinonaphthalene-8-sulphonate. , 1974, Biochimica et Biophysica Acta.

[65]  T. Tao Time‐dependent fluorescence depolarization and Brownian rotational diffusion coefficients of macromolecules , 1969 .

[66]  C. Gitler Microscopic Properties of Discrete Membrane Loci , 1971 .

[67]  P. Overath,et al.  The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions. , 1973, Biochimica et biophysica acta.

[68]  C. Tondre,et al.  A kinetic study of the binding of an ADP fluorescent analog to mitochondrial ATPase. , 1973, Biochimica et biophysica acta.

[69]  E. C. Slater,et al.  The binding of aurovertin to mitochondria, and its effect on mitochondrial respiration. , 1973, Biochimica et biophysica acta.

[70]  F. Conti,et al.  Fluorescent probes in nerve membranes. , 1975, Annual review of biophysics and bioengineering.

[71]  B M Salzberg,et al.  A large change in axon fluorescence that provides a promising method for measuring membrane potential. , 1973, Nature: New biology.

[72]  G K Radda,et al.  A fluorescence probe of energy-dependent structure changes in fragmented membranes. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[73]  L. Hokin,et al.  Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. 8. Effects of ligands on fluorescence due to interaction of the enzyme with a fluorescent derivative of hellebrigenin. , 1972, Molecular pharmacology.

[74]  V. Skulachev,et al.  Anilinonaphthalenesulfonate fluorescence changes induced by non-emzymatic generation of membrane potential in mitochondria and submitochondrial particles. , 1971, Biochimica et biophysica acta.

[75]  D. Deamer,et al.  The response of fluorescent amines to pH gradients across liposome membranes. , 1972, Biochimica et biophysica acta.

[76]  I. Smith,et al.  Cation-induced organization changes in a lipid bilayer model membrane. , 1970, Biochemical and biophysical research communications.

[77]  R. Kornberg,et al.  Inside-outside transitions of phospholipids in vesicle membranes. , 1971, Biochemistry.

[78]  W. G. Martin,et al.  Dynamic behavior of fluorescent probes in lipid bilayer model membranes. , 1973, Biochemistry.

[79]  W. J. Adelman,et al.  Biophysics and physiology of excitable membranes , 1971 .

[80]  L. Stryer,et al.  Segmental flexibility in an antibody molecule. , 1970, Journal of molecular biology.

[81]  R M Williams,et al.  Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. , 1968, Biochimica et biophysica acta.

[82]  Angelo Azzi,et al.  Fluorochrome Interaction with the Mitochondrial Membrane THE EFFECT OF ENERGY CONSERVATION , 1971 .

[83]  E. Sackmann,et al.  Spin labels as enzyme substrates. Heterogeneous lipid distribution in liver microsomal membranes. , 1973, Biochimica et biophysica acta.

[84]  W H Barry,et al.  Turbidity, Birefringence, and Fluorescence Changes in Skeletal Muscle Coincident with the Action Potential , 1969, Science.

[85]  H. Eibl,et al.  Electrostatic effects on lipid phase transitions: membrane structure and ionic environment. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Otto Stern,et al.  Über die abklingungszeit der fluoreszenz , 1919 .

[87]  J. Lakowicz,et al.  Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. , 1973, Biochemistry.

[88]  R. D. Dyson,et al.  Studies on the analysis of fluorescence decay data by the method of moments. , 1973, Biophysical journal.

[89]  J. Callis,et al.  Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes. , 1974, Biochemistry.

[90]  W. Lesslauer,et al.  On the location of 1-anilino-8-naphthalene-sulfonate in lipid model systems , 1971 .

[91]  A. Caswell,et al.  Visualization of membrane bound cations by a fluorescent technique. , 1971, Biochemical and biophysical research communications.

[92]  G. Oster,et al.  Fluorescence and Internal Rotation: Their Dependence on Viscosity of the Medium1 , 1956 .

[93]  A Watanabe,et al.  Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[94]  T. W. Keenan,et al.  On the role of membrane phase in the transmission mechanism of colicin E1. , 1973, Biochemistry.

[95]  W. Hasselbach,et al.  Changes of the fluorescence of 1-anilino-8-naphthalenesulfonate, associated with the membranes of the sarcoplasmic reticulum, induced by general anesthetics. , 1973, European journal of biochemistry.

[96]  J. Faucon,et al.  Effects of ions on vesicles and phospholipid dispersions studied by polarization of fluorescence. , 1974, Biochimica et biophysica acta.

[97]  E. Shechter,et al.  Correlations between structure and spectroscopic properties in membrane model system. Fluorescence and circular dichroism of the cytochrome c-cardiolipin system. , 1973, European journal of biochemistry.

[98]  W. Drabikowski,et al.  Filipin as a fluorescent probe for the location of cholesterol in the membranes of fragmented sarcoplasmic reticulum. , 1973, Biochimica et biophysica acta.

[99]  L. Brand,et al.  Fluorescence probes for structure. , 1972, Annual review of biochemistry.

[100]  G. Radda,et al.  Local anesthetic induced changes of a membrane‐bound fluorochrome A link between ion uptake and membrane structure , 1969, FEBS letters.

[101]  C. Gitler Plasticity of biological membranes. , 1972, Annual review of biophysics and bioengineering.

[102]  G. Weber,et al.  Fluorescent indicators of adsorption in aqueous solution and on the solid phase. , 1954, The Biochemical journal.

[103]  L. Brand,et al.  Nanosecond time-resolved emission spectroscopy of a fluorescence probe bound to L- -egg lecithin vesicles. , 1973, Biochemical and biophysical research communications.

[104]  B. Chance,et al.  Cytochrome c interaction with membranes. I. Use of a fluorescent chromophore in the study of cytochrome c interaction with artificial and mitochondrial membranes. , 1973, Archives of biochemistry and biophysics.

[105]  F. Rossi,et al.  Use of 1-anilino-8-naphtalene sulfonate to study structural transitions in cell membrane of PMN leucocytes. , 1970, Biochemical and biophysical research communications.

[106]  L. Ernster,et al.  Studies of the energy-transfer system of submitochondrial particles. Fluorochrome response as a measure of the energized state. , 1971, European journal of biochemistry.

[107]  M. Lang,et al.  1‐Anilino‐8‐naphthalene sulfonate and N‐phenyl‐1‐naphthylamine as the indicators of bacterial thermosensitivity , 1973, FEBS letters.

[108]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[109]  B. Chance Fluorescent probe environment and the structural and charge changes in energy coupling of mitochondrial membranes. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[110]  L. Packer,et al.  pH-dependent changes in mitochondrial membrane structure , 1970, Journal of bioenergetics.

[111]  R. Cone Rotational diffusion of rhodopsin in the visual receptor membrane. , 1972, Nature: New biology.

[112]  G. Azzone,et al.  The effects of electrolytes on the interaction of cationic dyes with energized mitochondrial fragments. , 1973, European journal of biochemistry.

[113]  K. Jacobson,et al.  Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. , 1973, Biochimica et biophysica acta.

[114]  Z. Gromet-Elhanan Changes in the fluorescence of atebrin and of anilino-naphthalene sulfonate reflecting two different light-induced processes in Rhodospirillum rubrum chromatophores. , 1972, European journal of biochemistry.

[115]  A. Azzi,et al.  On the interpretation of energy linked 1‐anilino‐8‐naphthalene sulfonic acid fluorescence changes in mitochondrial fragments , 1972, FEBS letters.

[116]  V. Skulachev,et al.  Anilinonaphthalene sulfonate and other synthetic ions as mitochondrial membrane penetrants: An H+ pulse technique study , 1973, FEBS letters.

[117]  L. Stryer,et al.  Fluorescence spectroscopy of an oriented model membrane. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[118]  G K Radda,et al.  Enzyme and membrane conformation in biochemical control. , 1971, The Biochemical journal.

[119]  H. Hauser,et al.  Physical studies of phospholipids. XI. Ca2+ binding to monolayers of phosphatidylserine and phosphatidylinositol. , 1969, Biochimica et biophysica acta.

[120]  G. Dallner,et al.  Structural properties of rough and smooth microsomal membranes. A study with fluorescence probes. , 1972, Biochimica et biophysica acta.

[121]  L. Sachs,et al.  Microviscosity in the surface membrane lipid layer of intact normal lymphocyte leukemic cells , 1974, FEBS letters.

[122]  B. Chance,et al.  Temperature sensitivity of fluorescence probes in the presence of model membranes and mitochondria , 1972, FEBS letters.

[123]  W. Williams,et al.  An analysis of the binding of 8‐anilino‐1‐naphthalene‐sulphonate to sub‐mitochondrial particles , 1974, FEBS letters.

[124]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .

[125]  G. Radda,et al.  The interaction of 1‐anilino‐8‐naphthalene sulphonate with erythrocyte membranes , 1969, FEBS letters.

[126]  J. Vanderkooi,et al.  Sarcoplasmic reticulum. XII. The interaction of 8-anilino-1-naphthalene sulfonate with skeletal muscle microsomes. , 1971, Archives of biochemistry and biophysics.

[127]  G. Weber,et al.  Rotational Brownian motion and polarization of the fluorescence of solutions. , 1953, Advances in protein chemistry.

[128]  P. K. Brown Rhodopsin rotates in the visual receptor membrane. , 1972, Nature: New biology.

[129]  K. Dam,et al.  Binding of aurovertin to phosphorylating submitochondrial particles. , 1974 .

[130]  R. Kraayenhof Quenching of uncoupler fluorescence in relation on the “energized state” in chloroplasts , 1970, FEBS letters.

[131]  G. Radda,et al.  Can fluorescent probes tell us anything about membranes , 1972 .

[132]  F. Conti,et al.  Fluorescence signals in ANS-stained lipid bilayers under applied potentials , 1972, Biophysik.

[133]  L. Sachs,et al.  Rotational diffusion of lectins bound to the surface membrane of normal lymphocytes , 1973, FEBS letters.

[134]  D. Chapman,et al.  Physical studies of phospholipids. Part 5.—Proton magnetic resonance studies of molecular motion in some 2,3-diacyl-DL-phosphatidylethanolamines , 1966 .

[135]  J. Changeux,et al.  In vitro interaction of 1-anilino 8 naphthalene sulfonate with excitable membranes isolated from the electric organ of Electrophorus electricus. , 1969, Biochemical and biophysical research communications.

[136]  D. Wallach,et al.  The study of lipid-protein interactions in membranes by fluorescent probes. , 1970, Biochimica et biophysica acta.

[137]  A. Keith,et al.  A summary and evaluation of spin labels used as probes for biological membrane structure. , 1973, Biochimica et biophysica acta.

[138]  D. Papahadjopoulos,et al.  Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals. , 1967, Biochimica et biophysica acta.

[139]  B. Chance,et al.  Fluorescent probe analysis of the lipid architecture of natural and experimental cholesterol-rich membranes. , 1974, Biochemistry.

[140]  A. Azzi The use of fluorescent probes for the study of membranes. , 1974, Methods in enzymology.

[141]  C. Lee A fluorescent probe of the hydrogen ion concentration in ethylenediaminetetraacetic acid particles of beef heart mitochondria. , 1971, Biochemistry.

[142]  L. Stryer Excited-state proton-transfer reactions - A deuterium isotope effect on fluorescence. , 1966 .

[143]  R. Harris Studies on the fluorescence and binding of 8-anilino-1-naphthalene sulfonate by submitochondrial particles. , 1971, Archives of biochemistry and biophysics.

[144]  E. Oldfield,et al.  Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol , 1972, FEBS letters.

[145]  I. Tasaki,et al.  Spectral analysis of extrinsic fluorescence of the nerve membrane labeled with aminonaphthalene derivatives. , 1973, Biochimica et biophysica acta.

[146]  R. Freedman,et al.  Fluorescence studies of drug and cation interactions with microsomal membranes , 1973, FEBS letters.

[147]  J. Vanderkooi,et al.  Sarcoplasmic reticulum. 8. Use of 8-anilino-1-naphthalene sulfonate as conformational probe on biological membranes. , 1969, Archives of biochemistry and biophysics.

[148]  P. Overath,et al.  Biogenesis of E. coli membrane: evidence for randomization of lipid phase. , 1971, Nature: New biology.

[149]  M. T. Flanagan,et al.  Electrostatic interactions in the binding of fluorescent probes to lipid membranes. , 1973, Biochimica et biophysica acta.

[150]  A. Crofts,et al.  Fast membrane H+ binding in the light-activated state of Chromatium chromatophores. , 1970, European journal of biochemistry.

[151]  E. Sackmann,et al.  Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition. , 1972, Journal of the American Chemical Society.

[152]  P. Overath,et al.  Phase transitions in cells, membranes, and lipids of Escherichia coli. Detection by fluorescent probes, light scattering, and dilatometry. , 1973, Biochemistry.

[153]  E. C. Slater,et al.  Interaction of aurovertin with submitochondrial particles, deficient in ATPase inhibitor. , 1974, Biochimica et biophysica acta.

[154]  G K Radda,et al.  Membrane studies with polarity-dependent and excimer-forming fluorescent probes. , 1970, The Biochemical journal.

[155]  J. Faucon,et al.  Aliphatic chain transitions of phospholipid vesicles and phospholipid dispersions determined by polarization of fluorescence. , 1973, Biochimica et biophysica acta.

[156]  A. Waggoner,et al.  A spin-labeled lipid for probing biological membranes. , 1969, Chemistry and physics of lipids.

[157]  J. Metcalfe,et al.  The localisation of small molecules in lipid bilayers , 1972, FEBS letters.

[158]  J. Lombardi,et al.  Anisotropic Rotational Relaxation in Rigid Media by Polarized Photoselection , 1966 .

[159]  D. Engelman,et al.  Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes by x-ray diffraction and nuclear magnetic resonance techniques. , 1971, Biochimica et biophysica acta.

[160]  S. Singer,et al.  The Fluid Mosaic Model of the Structure of Cell Membranes , 1972, Science.

[161]  I. Tasaki,et al.  Properties of squid axon membrane as revealed by a hydrophobic probe, 2-p-toluidinylnaphthalene-6-sulfonate. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[162]  H. Bücher,et al.  Electric field induced changes in the optical absorption of a merocyanine dye , 1969 .

[163]  G. Weber,et al.  Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes. I. Synthetic micelles. , 1971, Biochemistry.

[164]  E. Racker,et al.  Reconstitution of the third site of oxidative phosphorylation. , 1971, The Journal of biological chemistry.

[165]  N. Birdsall,et al.  The interaction of paramagnetic ions and spin labels with lecithin bilayers. , 1973, Biochimica et biophysica acta.

[166]  L. Stryer,et al.  Conformational aspects of rhodopsin and retinal disc membranes. , 1973, Journal of supramolecular structure.

[167]  P. Graziotti,et al.  The use of the fluorescent probe aurovertin, to monitor energy linked conformational changes in mitochondrial ATPases , 1973, FEBS letters.

[168]  R. Memming Theorie der Fluoreszenzpolarisation für nicht kugelsymmetrische Moleküle , 1961 .

[169]  A. Hodgkin,et al.  The effect of sodium ions on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.

[170]  L. Spero,et al.  Interaction of a fluorescent probe with erythrocyte membrane and lipids: Effects of local anesthetics and calcium , 1970, FEBS letters.

[171]  M. Sheetz,et al.  Effect of sonication on the structure of lecithin bilayers. , 1972, Biochemistry.

[172]  R. Rigler,et al.  Molecular interactions and structure as analysed by fluorescence relaxation spectroscopy , 1973, Quarterly Reviews of Biophysics.

[173]  L. Stryer,et al.  Fluorescent probes of biological membranes. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[174]  R. Benz,et al.  Valinomycin as a probe for the study of structural changes of black lipid membranes. , 1972, Biochimica et biophysica acta.

[175]  C. Gitler,et al.  Interaction of fluorescent probes with membranes. I. Effect of ions on erythrocyte membranes. , 1969, Biochemistry.

[176]  R. Williams,et al.  On the nature of hydrocarbon chain motions in lipid liquid crystals , 1969 .

[177]  S. J. Strickler,et al.  Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules , 1962 .

[178]  L. Stryer,et al.  Fluorescence spectroscopy of proteins. , 1968, Science.

[179]  V. Luzzati,et al.  Correlations between structure and spectroscopic properties in membrane model systems. Tryptophan and I-anilino-8-naphthalene sulfonate fluorescence in protein-lipid-water phases. , 1970, Biochimica et biophysica acta.

[180]  E. C. Slater,et al.  The allosteric binding of antimycin to cytochrome b in the mitochondrial membrane. , 1972, Biochimica et biophysica acta.

[181]  E. Sackmann,et al.  Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. 3. Structure of a steroid-lecithin system below and above the lipid-phase transition. , 1972, Journal of the American Chemical Society.

[182]  I. Tasaki,et al.  Fluorescence Changes during Conduction in Nerves Stained with Acridine Orange , 1969, Science.

[183]  M. Edidin,et al.  The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. , 1970, Journal of cell science.

[184]  G. Radda,et al.  Retinol: A fluorescent probe for membrane lipids , 1970, FEBS letters.

[185]  E. C. Slater,et al.  Dynamics of energy-transducing membranes , 1974 .

[186]  Th. Förster Fluoreszenz organischer Verbindungen , 1951 .

[187]  L. Cohen Changes in neuron structure during action potential propagation and synaptic transmission. , 1973, Physiological reviews.

[188]  E. Blout,et al.  ENERGY TRANSFER. A SYSTEM WITH RELATIVELY FIXED DONOR-ACCEPTOR SEPARATION. , 1965, Journal of the American Chemical Society.

[189]  H. Tedeschi,et al.  Mitochondrial membrane potential: evidence from studies with a fluorescent probe. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[190]  S. Rose,et al.  The effect of membrane lipid unsaturation on glycoside transport. , 1970, Biochemical and biophysical research communications.

[191]  P. Devaux,et al.  Lateral diffusion in spin-labeled phosphatidylcholine multilayers. , 1972, Journal of the American Chemical Society.

[192]  D. Branton,et al.  Membrane structure: spin labeling and freeze etching of Mycoplasma laidawii. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[193]  S. Massari The interaction of atebrin with phospholipid vesicles. , 1975, Biochimica et biophysica acta.