Detection of Natural Tilted Fractures From Azimuthal Seismic Amplitude Data Based on Linear-Slip Theory

Tilted transverse isotropy (TTI) is common for naturally fractured reservoir when the fractures exist a tilted axis of symmetry. Seismic characterization of natural tilted fractures from observable azimuthal reflected amplitude data, however, is quite difficult. We focus on the detection of natural tilted fractures from azimuthal seismic amplitude data, especially for low- and high-angle tilted fractures. Using the linear-slip theory, we first express the effective elastic stiffness matrix of a TTI medium as a function of background elastic moduli, fracture density, and three angles, including the incident angle, the azimuth angle, and the tilt angle. Based on the scattering function and the first-order perturbations in stiffness components across a weak-contrast reflection interface separating two weak-anisotropy TTI media, we then derive a weak-anisotropy and linearized PP-wave reflection coefficient containing the tilt angle and fracture density. For low- and high-angle aligned fracture sets, we formulate the low- and high-angle approximate PP-wave reflection coefficient equations, respectively, and propose a Bayesian seismic inversion approach to estimate the tilt angle and the corresponding fracture densities using the azimuthal differences in seismic reflected amplitude data. Synthetic and real datasets are used to demonstrate the feasibility and reliability of the proposed inversion approach. Test results make us believe that our proposed inversion approach allow us to obtain the tilted fracture properties of hydrocarbon reservoirs in a more accurate manner than previous cases of vertically transverse isotropy (VTI) or horizontally transverse isotropy (HTI).

[1]  A. Stovas,et al.  Reflection and transmission coefficient approximations for P, S1 and S2 waves in triclinic media , 2020 .

[2]  Junzhou Liu,et al.  Azimuthal Fourier coefficient inversion for horizontal and vertical fracture characterization in weakly orthorhombic media , 2020 .

[3]  K. Innanen,et al.  Estimating tilted fracture weaknesses from azimuthal differences in seismic amplitude data , 2020 .

[4]  Yi-an Cui,et al.  Elastic-Impedance-Based Fluid/Porosity Term and Fracture Weaknesses Inversion in Transversely Isotropic Media with a Tilted Axis of Symmetry , 2020 .

[5]  S. Yuan,et al.  AVAZ inversion for fracture weakness based on three-term Rüger equation , 2019, Journal of Applied Geophysics.

[6]  Huaizhen Chen,et al.  Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model , 2018, Pure and Applied Geophysics.

[7]  Xingyao Yin,et al.  Azimuthally pre-stack seismic inversion for orthorhombic anisotropy driven by rock physics , 2018, Science China Earth Sciences.

[8]  Xingyao Yin,et al.  Azimuthally anisotropic elastic impedance inversion for fluid indicator driven by rock physics , 2017 .

[9]  A. Stovas,et al.  Weak‐anisotropy approximation for P‐wave reflection coefficient at the boundary between two tilted transversely isotropic media , 2017 .

[10]  R. Bachrach Uncertainty and nonuniqueness in linearized AVAZ for orthorhombic media , 2015 .

[11]  J. Downton,et al.  Interpreting azimuthal Fourier coefficients for anisotropic and fracture parameters , 2015 .

[12]  B. Hardage,et al.  Fracture parameter inversion for Marcellus Shale , 2014 .

[13]  A. Morelli Inverse Problem Theory , 2010 .

[14]  A. Stovas,et al.  New weak-contrast approximation for reflection coefficients in transversely isotropic media , 2010 .

[15]  S. Hadley,et al.  Quantitative estimate of fracture density variations in the Nordegg with azimuthal AVO and curvature: A case study , 2010 .

[16]  A. D. Taleghani,et al.  The effect of mineralization on the ratio of normal to tangential compliance of fractures , 2009 .

[17]  C. Sayers Seismic characterization of reservoirs containing multiple fracture sets , 2009 .

[18]  Mrinal K. Sen,et al.  Use of AVOA data to estimate fluid indicator in a vertically fractured medium , 2006 .

[19]  J. Downton,et al.  Seismic parameter estimation from AVO inversion , 2005 .

[20]  Mrinal K. Sen,et al.  Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media , 2004 .

[21]  D. Lawton,et al.  A practical method for estimating effective parameters of anisotropy from reflection seismic data , 2004 .

[22]  B. Gurevich Elastic properties of saturated porous rocks with aligned fractures , 2003 .

[23]  J. L. Martins,et al.  Properties of Weak Contrast PP Reflection/Transmission Coefficients for Weakly Anisotropic Elastic Media , 2001 .

[24]  Ilya Tsvankin,et al.  Seismic Signatures and Analysis of Reflection Data in Anisotropic Media , 2001 .

[25]  D. Gray,et al.  Fracture detection in Manderson Field: A 3-D AVAZ case history , 2000 .

[26]  A. Bakulin,et al.  Estimation of fracture parameters from reflection seismic data—Part I: HTI model due to a single fracture set , 2000 .

[27]  V. Vavryčuk Weak‐contrast reflection/transmission coefficients in weakly anisotropic elastic media: P‐wave incidence , 1999 .

[28]  Andreas Rüger,et al.  Variation of P-wave reflectivity with offset and azimuth in anisotropic media , 1998 .

[29]  C. Sayers Misalignment of the orientation of fractures and the principal axes for P and S waves in rocks containing multiple non-orthogonal fracture sets , 1998 .

[30]  V. Vavryčuk,et al.  Weak Contrast PP Wave Displacement R/T Coefficients in Weakly Anisotropic Elastic Media , 1998 .

[31]  Andreas Rüger,et al.  P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry , 1997 .

[32]  B. Ursin,et al.  Weak-contrast approximation of the elastic scattering matrix in anisotropic media , 1996 .

[33]  Michael Schoenberg,et al.  Elastic waves through a simulated fractured medium , 1993 .

[34]  M. Schoenberg,et al.  Elastic wave propagation in media with parallel fractures and aligned cracks , 1988 .

[35]  L. Thomsen Weak elastic anisotropy , 1986 .

[36]  J. Hudson Overall properties of a cracked solid , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  Jianxin Liu,et al.  Azimuthal amplitude variation with offset parameterization and inversion for fracture weaknesses in tilted transversely isotropic media , 2021 .

[38]  Guangzhi Zhang,et al.  Fracture detection and fluid identification based on anisotropic Gassmann equation and linear-slip model , 2019, GEOPHYSICS.

[39]  Xingyao Yin,et al.  Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry , 2017, Surveys in Geophysics.

[40]  S. Peng,et al.  Azimuthal AVO for tilted TI medium , 2017 .

[41]  Colin M. Sayers,et al.  Geophysics Under Stress: Geomechanical Applications of Seismic and Borehole Acoustic Waves , 2010 .

[42]  R. Bansal Seismic characterization of naturally fractured reservoirs , 2007 .

[43]  A. Bakulin,et al.  Estimation of fracture parameters from reflection seismic data—Part II: Fractured models with orthorhombic symmetry , 2000 .

[44]  M. Schoenberg,et al.  Seismic anisotropy of fractured rock , 1995 .

[45]  Ronald A. Nelson,et al.  Geologic Analysis of Naturally Fractured Reservoirs , 1986 .