Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes : Structure and volume fraction effects

Abstract The water barrier properties of polyamide 12/organo-modified montmorillonite nanocomposites were studied by differential permeation. The water permeability and diffusivity were calculated from permeation kinetics and discussed with respect to the composite compositions. Depending on the clay volume fraction in the 0–5% range and the rotation speed during the composite processing, two different structures were obtained: a partially intercalated structure and a partially exfoliated structure, characterized by a higher level of exfoliation for the higher speed. In agreement with the tortuous path model, the water permeability and the diffusivity decrease with increasing clay volume fraction, ϕ, up to 2.5%, for both structures. However, beyond ϕ = 2.5% for partially intercalated nanocomposites and ϕ = 4% for partially exfoliated nanocomposites, the permeability no longer decreases, but increases. This effect was larger for the partially intercalated structure than for the partially exfoliated structure. The singular variations in the water permeation properties of nanocomposite membranes were interpreted in considering not only the structural properties, including the polymer crystallinity, but also various nanocomposite/permeant interactions, taking into account the plasticization phenomenon, solubility and free volume variations. It was possible to well simulate the permeation data by considering a water concentration dependent diffusion coefficient. Tensile measurements have shown the influence of the preparation conditions of nanocomposite membranes (clay volume fraction and the rotation speed) on the mechanical properties. As for permeation tests, the best performances were obtained with partially exfoliated nanocomposites compared to partially intercalated ones.

[1]  Richard A. Vaia,et al.  Microstructural Evolution of Melt Intercalated Polymer−Organically Modified Layered Silicates Nanocomposites , 1996 .

[2]  L. Mathias,et al.  Effects of melt-processing conditions on the quality of poly(ethylene terephthalate) montmorillonite clay nanocomposites† , 2002 .

[3]  Darren J. Martin,et al.  Thermal stability analysis of organo-silicates, using solid phase microextraction techniques , 2005 .

[4]  Yihu Song,et al.  Calculating barrier properties of polymer/clay nanocomposites: Effects of clay layers , 2006 .

[5]  S. Ray,et al.  New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials , 2003 .

[6]  T. Kurauchi,et al.  Sorption of water in nylon 6‐clay hybrid , 1993 .

[7]  T. Aubry,et al.  Influence of melt‐blending conditions on structural, rheological, and interfacial properties of polyamide‐12 layered silicate nanocomposites , 2006 .

[8]  R. B. Long Liquid Permeation through Plastic Films , 1965 .

[9]  T. D. Fornes,et al.  Structure and Properties of Nanocomposites Based on Nylon-11 and -12 Compared with Those Based on Nylon-6 , 2004 .

[10]  N. Ogata,et al.  Structure and thermal/mechanical properties of poly(l‐lactide)‐clay blend , 1997 .

[11]  B. Gnade,et al.  Nylon-6 and Montmorillonite-Layered Silicate (MLS) Nanocomposites , 2003 .

[12]  J. R. Sams,et al.  Three‐Body Effects in Physical Adsorption , 1966 .

[13]  S. Takahashi,et al.  Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings , 2006 .

[14]  A. A. Gusev,et al.  Rational Design of Nanocomposites for Barrier Applications , 2001 .

[15]  James Runt,et al.  New Biomedical Poly(urethane urea)−Layered Silicate Nanocomposites , 2001 .

[16]  Alexandre Blumstein,et al.  Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer , 1965 .

[17]  E. Pollet,et al.  Gas barrier properties of poly(ε‐caprolactone)/clay nanocomposites: Influence of the morphology and polymer/clay interactions , 2005 .

[18]  R. Vaia,et al.  Lattice model of polymer melt intercalation in organically-modified layered silicates , 1997 .

[19]  T. Ishikawa,et al.  Helium gas permeability of montmorillonite/epoxy nanocomposites , 2006 .

[20]  Richard A. Vaia,et al.  Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates , 1993 .

[21]  Stéphane Marais,et al.  Permeation of water through polar and nonpolar polymers and copolymers: Determination of the concentration‐dependent diffusion coefficient , 2000 .

[22]  J. Gérard,et al.  Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: Influence of the clay content and dispersion state , 2007 .

[23]  D. V. Krevelen Properties of Polymers , 1990 .

[24]  E. Giannelis,et al.  Synthesis and properties of new poly(dimethylsiloxane) nanocomposites , 1995 .

[25]  A. Clearfield,et al.  Barrier properties of model epoxy nanocomposites , 2008 .

[26]  I. Chin,et al.  Preparation and Interaction Characteristics of Organically Modified Montmorillonite Nanocomposite with Miscible Polymer Blend of Poly(Ethylene Oxide) and Poly(Methyl Methacrylate) , 2002 .

[27]  G. Brennan,et al.  Polyamide-12 layered silicate nanocomposites by melt blending , 2003 .

[28]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .

[29]  Edward L Cussler,et al.  Polydisperse flakes in barrier films , 2004 .

[30]  G. Fredrickson,et al.  BARRIER PROPERTIES OF ORIENTED DISK COMPOSITES , 1999 .

[31]  R. Bharadwaj MODELING THE BARRIER PROPERTIES OF POLYMER-LAYERED SILICATE NANOCOMPOSITES , 2001 .

[32]  T. Pinnavaia,et al.  Nanolayer Ordering in an Epoxy-Exfoliated Clay Hybrid Composite , 1996 .

[33]  Thomas J. Pinnavaia,et al.  Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites , 1995 .

[34]  Zhu Xiaoguang,et al.  Studies on nylon 6/clay nanocomposites by melt-intercalation process , 1999 .

[35]  Zeng Ke,et al.  Improve the gas barrier property of PET film with montmorillonite by in situ interlayer polymerization , 2005 .

[36]  A. Okada,et al.  Synthesis and properties of polyimide-clay hybrid films , 1997 .

[37]  John Crank,et al.  Diffusion in polymers , 1968 .

[38]  S. Marais,et al.  Water diffusion and permeability in unsaturated polyester resin films characterized by measurements performed with a water‐specific permeameter: Analysis of the transient permeation , 1999 .

[39]  F. A. Long,et al.  Diffusion of Hydrocarbons in Polyisobutylene1 , 1951 .

[40]  S. Kim,et al.  Characteristics of polyvinylpyrrolidone-layered silicate nanocomposites prepared by attrition ball milling , 2003 .

[41]  P. Messersmith,et al.  Synthesis and barrier properties of poly(ε‐caprolactone)‐layered silicate nanocomposites , 1995 .

[42]  Yu-hua Wang,et al.  Study on solvent permeation resistance properties of nylon6/clay nanocomposite , 2005 .

[43]  T. Kurauchi,et al.  Synthesis and properties of polyimide–clay hybrid , 1993 .

[44]  T. Pinnavaia,et al.  Clay-Reinforced Epoxy Nanocomposites , 1994 .

[45]  R. K. Shah,et al.  Nylon 6 nanocomposites prepared by a melt mixing masterbatch process , 2004 .

[46]  R. Mülhaupt,et al.  Synthesis and thermal behaviour of layered silicate-EVA nanocomposites , 2001 .

[47]  L. Nielsen Models for the Permeability of Filled Polymer Systems , 1967 .

[48]  T. Aubry,et al.  Mechanical properties of polyamide-12 layered silicate nanocomposites and their relations with structure , 2008 .

[49]  T. Aubry,et al.  Rheological investigation of the melt state elastic and yield properties of a polyamide-12 layered silicate nanocomposite , 2005 .

[50]  G. Vigier,et al.  Mechanical properties of clay‐reinforced polyamide , 2002 .

[51]  P. Messersmith,et al.  Polymer-layered silicate nanocomposites: in situ intercalative polymerization of .epsilon.-caprolactone in layered silicates , 1993 .

[52]  T. D. Fornes,et al.  Nylon 6 nanocomposites: the effect of matrix molecular weight , 2001 .

[53]  Donald R Paul,et al.  Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites , 2001 .

[54]  Jeffrey W. Gilman,et al.  Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites , 1999 .

[55]  R. E. Smallman,et al.  An assessment of high voltage electron microscopy (HVEM). An invited review , 1977 .

[56]  Francesco Scotognella,et al.  Stacking the Nanochemistry Deck: Structural and Compositional Diversity in One‐Dimensional Photonic Crystals , 2009 .

[57]  J. Kressler,et al.  Nanocomposites based on a synthetic layer silicate and polyamide-12 , 1998 .

[58]  Thomas J. Pinnavaia,et al.  Polymer-layered silicate nanocomposites: an overview , 1999 .

[59]  P. Dubois,et al.  Poly(epsilon-caprolactone)/clay nanocomposites by in-situ intercalative polymerization catalyzed by dibutyltin dimethoxide , 2002 .

[60]  B. Wunderlich,et al.  Thermodynamic properties of liquid and semicrystalline linear aliphatic polyamides , 1990 .

[61]  K. Strawhecker,et al.  Structure and Properties of Poly(vinyl alcohol)/Na+ Montmorillonite Nanocomposites , 2000 .

[62]  E. Pollet,et al.  Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion , 2003 .

[63]  I. Grillo,et al.  Growth and branching of charged wormlike micelles as revealed by dilution laws. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[64]  Emmanuel P. Giannelis,et al.  Polymer Layered Silicate Nanocomposites , 1996 .

[65]  W. Kuhn,et al.  Measurement of crystalline index in nylons by DSC: Complexities and recommendations , 1997 .