Arena size modulates functional responses via behavioral mechanisms

[1]  Meng Xu,et al.  Invader Relative Impact Potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species , 2017, Journal of Applied Ecology.

[2]  Björn C. Rall,et al.  Taxonomic versus allometric constraints on non‐linear interaction strengths , 2011 .

[3]  K. Hohberg,et al.  Predator–prey interaction in soil food web: functional response, size-dependent foraging efficiency, and the influence of soil texture , 2005, Biology and Fertility of Soils.

[4]  B. Yaşar,et al.  Functional response of Oenopia conglobata (L.) (Coleoptera: Coccinellidae) on Hyalopterus pruni (Geoffroy) (Homoptera: Aphididae) in three different size arenas Üç farklı büyüklükteki alanda Hyalopterus pruni (Geoffroy) (Homoptera: Aphididae) üzerinde beslenen Oenopia conglobata (L.) (Coleoptera: Co , 2005 .

[5]  M. Hoddle The effect of prey species and environmental complexity on the functional response of Franklinothrips orizabensis: a test of the fractal foraging model , 2003 .

[6]  R. Arditi,et al.  Spatial heterogeneity and functional response: an experiment in microcosms with varying obstacle densities , 2010, Oecologia.

[7]  J. Britton,et al.  Assessing the ecological impacts of invasive species based on their functional responses and abundances , 2017, Biological Invasions.

[8]  Björn C. Rall,et al.  How patch size and refuge availability change interaction strength and population dynamics: a combined individual- and population-based modeling experiment , 2017, PeerJ.

[9]  A. L. Turnbull,et al.  The Interaction of Spatial Heterogeneity, Predator Competition and the Functional Response to Prey Density in a Laboratory System of Wolf Spiders (Araneae: Lycosidae) and Fruit Flies (Diptera: Drosophilidae) , 1974 .

[10]  A. Urbaneja,et al.  Activity-density of Pardosa cribata in Spanish citrus orchards and its predatory capacity on Ceratitis capitata and Myzus persicae , 2009, BioControl.

[11]  G. Benz,et al.  Feeding ecology and predatory importance of wolf spiders (Pardosa spp.) (Araneae, Lycosidae) in winter wheat fields 1 , 1988 .

[12]  Ulrich Brose,et al.  Habitat structure alters top-down control in litter communities , 2012, Oecologia.

[13]  B. Griffen,et al.  Predator size interacts with habitat structure to determine the allometric scaling of the functional response , 2013 .

[14]  D. Rogers,et al.  Random search and insect population models , 1972 .

[15]  C. Steele,et al.  COVER-SEEKING BEHAVIOR AND SHELTER USE BY JUVENILE AND ADULT CRAYFISH, PROCAMBARUS CLARKII: POTENTIAL IMPORTANCE IN SPECIES INVASION , 1999 .

[16]  D. Richardson,et al.  Existing and emerging high impact invasive species are characterized by higher functional responses than natives , 2014, Biology Letters.

[17]  Craig Packer,et al.  Group formation stabilizes predator–prey dynamics , 2007, Nature.

[18]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[19]  John P. DeLong,et al.  Multiple factors, including arena size, shape the functional responses of ladybird beetles , 2018 .

[20]  U. Brose,et al.  Habitat structure and prey aggregation determine the functional response in a soil predator–prey interaction , 2010 .

[21]  H. Kaiser Small scale spatial heterogeneity influences predation success in an unexpected way: Model experiments on the functional response of predatory mites (Acarina) , 1983, Oecologia.

[22]  R. Spiteri,et al.  How linear features alter predator movement and the functional response , 2012, Interface Focus.

[23]  B. McGill,et al.  An allometric vision and motion model to predict prey encounter rates , 2006 .

[24]  T. Royama A comparative study of models for predation and parasitism , 1971, Researches on Population Ecology.

[25]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.

[26]  Pietro Perona,et al.  Automated image-based tracking and its application in ecology. , 2014, Trends in ecology & evolution.

[27]  Yuanheng Li,et al.  Experimental duration and predator satiation levels systematically affect functional response parameters , 2017, bioRxiv.

[28]  J. Delong,et al.  Body size, body size ratio, and prey type influence the functional response of damselfly nymphs , 2017, Oecologia.

[29]  Daniel Barrios-O'Neill,et al.  On the context-dependent scaling of consumer feeding rates. , 2016, Ecology letters.

[30]  G. Fraenkel Orientation of Animals , 1940 .

[31]  J. Wootton,et al.  Using experimental indices to quantify the strength of species interactions , 2010 .

[32]  K. Kiritani,et al.  Quantitative evaluation of predation by spiders on the green rice leafhopper,Nephotettix cincticeps Uhler, by a sight-count method , 1972, Researches on Population Ecology.

[33]  Owen L. Petchey,et al.  Universal temperature and body-mass scaling of feeding rates , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  Björn C. Rall,et al.  Allometric functional response model: body masses constrain interaction strengths. , 2010, The Journal of animal ecology.

[35]  R. Slotow,et al.  The effects of fences and lions on the ecology of African wild dogs reintroduced to Pilanesberg National Park, South Africa , 2003 .