Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France)

Methane is a powerful greenhouse gas and its concentration in the atmosphere has increased over the past decades. Methane produced by methanogenic Archae can be consumed through aerobic and anaerobic oxidation pathways. In anoxic conditions found in freshwater environments such as meromictic lakes, CH4 oxidation pathways involving different terminal electron acceptors such as NO 3 , SO2 4 , and oxides of Fe and Mn are thermodynamically possible. In this study, a reactive transport model was developed to assess the relative significance of the different pathways of CH4 consumption in the water column of Lake Pavin. In most cases, the model reproduced experimental data collected from the field from June 2006 to June 2007. Although the model and the field measurements suggest that anaerobic CH4 oxidation may contribute to CH4 consumption in the water column of Lake Pavin, aerobic oxidation remains the major sink of CH4 in this lake.

[1]  A. Dolman,et al.  Summer soil CH4 emission and uptake in taiga forest near Yakutsk, Eastern Siberia , 2008 .

[2]  David M. Karl,et al.  Aerobic production of methane in the sea , 2008 .

[3]  S. P. Garabedian,et al.  In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests , 1991, Applied and environmental microbiology.

[4]  M. Schmid,et al.  The physical structure and dynamics of a deep, meromictic crater lake (Lac Pavin, France) , 2002, Hydrobiologia.

[5]  Gene E. Likens,et al.  Encyclopedia of Inland Waters , 2009 .

[6]  L. Alvarez-Cohen,et al.  Seasonally-induced fluctuations in microbial production and consumption of methane during bioremediation of aged subsurface refinery contamination , 1999 .

[7]  P Reichert,et al.  River Water Quality Model no. 1 (RWQM1): II. Biochemical process equations. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[8]  Simone Tanelli,et al.  CloudSat mission: Performance and early science after the first year of operation , 2008 .

[9]  Y. Nojiri,et al.  Dynamics of dissolved methane and methane oxidation in dimictic Lake Nojiri during winter , 1998 .

[10]  Paul J. Crutzen,et al.  Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions , 1989 .

[11]  D. Jézéquel,et al.  Geochemical study of a crater lake: Lake Pavin, Puy de Dôme, France. Constraints afforded by the particulate matter distribution in the element cycling within the lake , 1997 .

[12]  B. Ramakrishnan,et al.  Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species. , 2001, Journal of environmental quality.

[13]  M. Pace,et al.  Fates of methane from different lake habitats: Connecting whole‐lake budgets and CH4 emissions , 2008 .

[14]  M. Krüger,et al.  Cooccurrence of Aerobic and Anaerobic Methane Oxidation in the Water Column of Lake Plußsee , 2005, Applied and Environmental Microbiology.

[15]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .

[16]  J. Rudd,et al.  Measurement of microbial oxidation of methane in lake water , 1974 .

[17]  M. Winfrey,et al.  Microbial Methanogenesis and Acetate Metabolism in a Meromictic Lake , 1979, Applied and environmental microbiology.

[18]  Vitesses de réaction de dissolution et précipitation au voisinage de l'interface oxydo-réducteur dans un lac méromictique : le lac Pavin (Puy de Dôme, France) , 2003 .

[19]  T. Treude,et al.  Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. , 2006, Environmental microbiology.

[20]  L. Merlivat,et al.  Air-Sea Gas Exchange Rates: Introduction and Synthesis , 1986 .

[21]  G. Fonty,et al.  Depth-Related Gradients of Viral Activity in Lake Pavin , 2006, Applied and Environmental Microbiology.

[22]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[23]  Марк Д. Левайн,et al.  Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Technical Summary , 2007 .

[24]  B. Tilbrook,et al.  Production and transport of methane in oceanic particulate organic matter , 1994, Nature.

[25]  S. Katsev,et al.  The methane cycle in ferruginous Lake Matano , 2011, Geobiology.

[26]  C. Quiblier-Lloberas,et al.  Impact of grazing on phytoplankton in Lake Pavin (France): Contribution of different zooplankton groups , 1996 .

[27]  A. Hofmann,et al.  METHANE CONCENTRATION PROFILES IN A LAKE WITH A PERMANENTLY ANOXIC HYPOLIMNION (LAKE LUGANO, SWITZERLAND-ITALY) , 1996 .

[28]  R. Oremland,et al.  Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation1 , 1987 .

[29]  B. Boudreau Diagenetic models and their implementation , 1997 .

[30]  Michael J. Whiticar,et al.  Stable Isotopes and Global Budgets , 1993 .

[31]  M. Lidstrom,et al.  Seasonal Study of Methane Oxidation in Lake Washington , 1984, Applied and environmental microbiology.

[32]  David L. Valentine,et al.  Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review , 2002, Antonie van Leeuwenhoek.

[33]  E. Viollier Geochimie des elements traces en milieu lacustre , 1995 .

[34]  C. Amblard,et al.  Seasonal dynamics and vertical distribution of planktonic ciliates and their relationship to microbial food resources in the oligomesotrophic Lake Pavin , 1998 .

[35]  S. Joye,et al.  Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). , 2005, Environmental microbiology.

[36]  Peter Reichert,et al.  Concepts underlying a computer program for the identification and simulation of aquatic systems , 1994 .

[37]  M. Kimura,et al.  Methane production and its fate in paddy fields: II. Oxidation of methane and its coupled ferric oxide reduction in subsoil , 1992 .

[38]  N. Iversen,et al.  Methane dynamics in a shallow non-tidal estuary (Randers Fjord, Denmark) , 2002 .

[39]  V. A. Kapitanov,et al.  Sources and sinks of methane in Lake Baikal: A synthesis of measurements and modeling , 2007 .

[40]  D. Debroas,et al.  Community composition and activity of prokaryotes associated to detrital particles in two contrasting lake ecosystems. , 2006, FEMS microbiology ecology.

[41]  P. Buat-Ménard The role of air-sea exchange in geochemical cycling , 1986 .

[42]  Yifeng Wang,et al.  Cycling of iron and manganese in surface sediments; a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese , 1996 .

[43]  P. Albéric,et al.  Interactions between trace elements and dissolved organic matter in the stagnant anoxic deep layer of a meromictic lake , 2000 .

[44]  R. Jellison,et al.  Oxidation of ammonia and methane in an alkaline, saline lake , 1999 .

[45]  T. Wilbanks,et al.  Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[46]  High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia) , 2005 .

[47]  J. Greinert,et al.  Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone , 2000 .

[48]  La communauté procaryotique dans les zones anoxiques de deux écosystèmes lacustres : structure et diversitéEtude plus particulière de son rôle fonctionnel dans le monimolimnion d'un lac méromictique (lac Pavin) , 2006 .

[49]  Mike S. M. Jetten,et al.  A microbial consortium couples anaerobic methane oxidation to denitrification , 2006, Nature.

[50]  K. Nauhaus,et al.  In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. , 2002, Environmental microbiology.

[51]  R. Oremland,et al.  Distribution and Diversity of Archaea Corresponding to the Limnological Cycle of a Hypersaline Stratified Lake (Solar Lake, Sinai, Egypt) , 2000, Applied and Environmental Microbiology.

[52]  Kazuo Yamamoto,et al.  Denitrification with methane as external carbon source. , 2007, Water research.

[53]  Y. Nojiri,et al.  Oxidation of dissolved methane in a eutrophic, shallow lake: Lake Kasumigaura, Japan , 1998 .

[54]  D. Lovley,et al.  Rapid Assay for Microbially Reducible Ferric Iron in Aquatic Sediments , 1987, Applied and environmental microbiology.

[55]  D. Jézéquel,et al.  Hydrological budget, carbon sources and biogeochemical processes in Lac Pavin (France): Constraints from δ18O of water and δ13C of dissolved inorganic carbon , 2008 .

[56]  J. R. Fisher,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar pressure and at higher temperature , 1978 .

[57]  M. Khalil,et al.  Atmospheric Methane: Sources, Sinks, and Role in Global Change , 1993, NATO ASI Series.

[58]  S. Smith,et al.  Modeling the transport and reaction of trace metals in water‐saturated soils and sediments , 1998 .

[59]  W. Stumm Chemical processes in lakes , 1985 .

[60]  V. Orphan,et al.  Manganese- and Iron-Dependent Marine Methane Oxidation , 2009, Science.

[61]  P. Evans,et al.  Phylogenetic Diversity of Archaea and Bacteria in the Anoxic Zone of a Meromictic Lake (Lake Pavin, France) , 2007, Applied and Environmental Microbiology.

[62]  P. Albéric,et al.  Geochernical study of a crater lake (Pavin Lake, France): Trace-element behaviour in the monimolimnion , 1995 .

[63]  Philippe Van Cappellen,et al.  Kinetic modeling of microbially-driven redox chemistry of subsurface environments : coupling transport, microbial metabolism and geochemistry , 1998 .

[64]  D. Jézéquel,et al.  Geochemical study of a crater lake: Pavin Lake, France — Identification, location and quantification of the chemical reactions in the lake , 1994 .

[65]  J. Rudd,et al.  Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism 1 , 1978 .

[66]  M. Taillefert,et al.  Reactive transport modeling of trace elements in the water column of a stratified lake: iron cycling and metal scavenging , 2000 .

[67]  Thomas D. Brock,et al.  Anaerobic Methane Oxidation: Occurrence and Ecology , 1980, Applied and environmental microbiology.

[68]  P. Reichert,et al.  Biogeochemical model of Lake Zurich: model equations and results , 2001 .

[69]  Christophe Rabouille,et al.  Biogeochemical Transformations in Sediments: Kinetic Models of Early Diagenesis , 1993 .

[70]  F. Guérin,et al.  Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir , 2007 .

[71]  P. Gschwend,et al.  Vertical distribution of microbial lipids and functional genes in chemically distinct layers of a highly polluted meromictic lake , 2008 .

[72]  Gernot E. Friederich,et al.  New Constraints on Methane Fluxes and Rates of Anaerobic Methane Oxidation in a Gulf of Mexico Brine Pool via In Situ Mass Spectrometry , 2010 .

[73]  P. Régnier,et al.  Incorporating geomicrobial processes in reactive transport models of subsurface environments , 2005 .

[74]  D. Debroas,et al.  Anaerobic Microbial Communities in Lake Pavin, a Unique Meromictic Lake in France , 2005, Applied and Environmental Microbiology.

[75]  F Thalasso,et al.  Evidence of anoxic methane oxidation coupled to denitrification. , 2004, Water research.