Exponential Stabilization of an Overhead Crane with Flexible Cable Via the Cascade Approach 1

[1]  M. Slemrod,et al.  Asymptotic behavior of nonlinear contraction semigroups , 1973 .

[2]  D. Russell Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods☆ , 1975 .

[3]  P. Kokotovic,et al.  A positive real condition for global stabilization of nonlinear systems , 1989 .

[4]  Marshall Slemrod Feedback stabilization of a linear control system in Hilbert space with ana priori bounded control , 1989, Math. Control. Signals Syst..

[5]  John Tsinias,et al.  Sufficient lyapunov-like conditions for stabilization , 1989, Math. Control. Signals Syst..

[6]  A. Isidori,et al.  New results and examples in nonlinear feedback stabilization , 1989 .

[7]  J. Coron,et al.  Adding an integrator for the stabilization problem , 1991 .

[8]  J. Coron,et al.  Lyapunov design of stabilizing controllers for cascaded systems , 1991 .

[9]  Brigitte d'Andréa-Novel,et al.  Control of an overhead crane: Stabilization of flexibilities , 1992 .

[10]  B. Rao Decay estimates of solutions for a hybrid system of flexible structures , 1993, European Journal of Applied Mathematics.

[11]  B. Rao Stabilisation uniforme d'un système hybride en élasticité , 1993 .

[12]  Brigitte d'Andréa-Novel,et al.  Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane , 1994, Math. Control. Signals Syst..

[13]  Ö. Morgül,et al.  On the stabilization of a cable with a tip mass , 1994, IEEE Trans. Autom. Control..

[14]  C. Samson,et al.  Time-varying exponential stabilization of the attitude of a rigid spacecraft with two controls , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.