Greenland Ice Sheet Mass Balance Reconstruction. Part III: Marine Ice Loss and Total Mass Balance (1840–2010)

AbstractGreenland ice sheet mass loss to the marine environment occurs by some combination of iceberg calving and underwater melting (referred to here as marine ice loss, LM). This study quantifies the relation between LM and meltwater runoff (R) at the ice sheet scale. A theoretical basis is presented explaining how variability in R can be expected to govern much of the LM variability over annual to decadal time scales. It is found that R enhances LM through three processes: 1) increased glacier discharge by ice warming–softening and basal lubrication–sliding; 2) increased calving susceptibility through undercutting glacier front geometry and reducing ice integrity; and 3) increased underwater melting from forcing marine convection. Applying a semiempirical LM f(R) parameterization to a surface mass balance reconstruction enables total ice sheet mass budget closure over the 1840–2010 period. The estimated cumulative 171-yr net ice sheet sea level contribution is 25 ± 10 mm, the rise punctuated by periods...

[1]  J. Oerlemans,et al.  Contribution of glacier melt to sea-level rise since AD 1865: a regionally differentiated calculation , 1997 .

[2]  S. Malyshev,et al.  Climate/chemistry effects of the Pinatubo volcanic eruption simulated by the UIUC stratosphere/troposphere GCM with interactive photochemistry , 2002 .

[3]  S. Levitus,et al.  Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems , 2007 .

[4]  David M. Holland,et al.  Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters , 2008 .

[5]  D. Menemenlis,et al.  Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge , 2012, Annals of Glaciology.

[6]  Water Flow in Glaciers: Jökulhlaups, Tunnels and Veins , 1976 .

[7]  S. Peckham,et al.  The physical basis of glacier volume-area scaling , 1997 .

[8]  M. Hughes,et al.  Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations , 1999 .

[9]  Eric Rignot,et al.  Antarctic grounding line mapping from differential satellite radar interferometry , 2011 .

[10]  Fraser Davidson,et al.  Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland , 2010 .

[11]  M. Zweng,et al.  Warming and freshening of Baffin Bay, 1916-2003 , 2006 .

[12]  W. T. Pfeffer,et al.  Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise , 2008, Science.

[13]  Michel Crucifix,et al.  Thermohaline circulation hysteresis: A model intercomparison , 2005 .

[14]  B. L. Beattie,et al.  Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow , 2002 .

[15]  S. Rysgaard,et al.  Physical Conditions, Carbon Transport, and Climate Change Impacts in a Northeast Greenland Fjord , 2003 .

[16]  Niels Reeh,et al.  Mass Balance of the Greenland Ice Sheet at Dye 3 , 1985, Journal of Glaciology.

[17]  Philippe Huybrechts,et al.  Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage , 2011, Nature.

[18]  L. Stearns,et al.  Controls on the recent speed-up of Jakobshavn Isbræ, West Greenland , 2011, Journal of Glaciology.

[19]  A. Vieli,et al.  A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics , 2010, Journal of Glaciology.

[20]  Eric Rignot,et al.  Mass balance of the Greenland ice sheet from 1958 to 2007 , 2008 .

[21]  Eric Rignot,et al.  Rapid submarine melting of the calving faces of West Greenland glaciers , 2010 .

[22]  N. White,et al.  Sea-Level Rise from the Late 19th to the Early 21st Century , 2011 .

[23]  Konrad Steffen,et al.  The apparent effects of the Mt. Pinatubo Eruption on the Greenland Ice Sheet melt extent , 1997 .

[24]  R. Alley,et al.  Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights , 2005, Annals of Glaciology.

[25]  Ian Joughin,et al.  Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage , 2008, Science.

[26]  A. U.S CAN A WATER-FILLED CREVASSE REACH THE BOTTOM SURFACE OF A GLACIER? By J. WEERTMAN , 2007 .

[27]  Ian Joughin,et al.  Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet , 2008, Science.

[28]  X. Fettweis,et al.  Hydrologic response of the Greenland ice sheet: the role of oceanographic warming , 2009 .

[29]  Ian M. Howat,et al.  Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland , 2010, Journal of Glaciology.

[30]  Carl E. Bøggild,et al.  A new present-day temperature parameterization for Greenland , 2009, Journal of Glaciology.

[31]  D. Bromwich,et al.  Greenland Ice Sheet Surface Mass Balance Variability ( 1988 – 2004 ) from Calibrated Polar MM 5 Output , 2006 .

[32]  Alun Hubbard,et al.  Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier , 2010 .

[33]  C. J. van der Veen,et al.  Fracture mechanics approach to penetration of surface crevasses on glaciers , 1998 .

[34]  M. R. van den Broeke,et al.  Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling , 2009 .

[35]  B. Hasholt,et al.  Sediment transport to the Arctic Ocean and adjoining cold oceans , 2006 .

[36]  Edward Hanna,et al.  Increased Runoff from Melt from the Greenland Ice Sheet: A Response to Global Warming , 2008 .

[37]  D. Bromwich,et al.  Greenland Ice Sheet Surface Air Temperature Variability: 1840–2007* , 2009 .

[38]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[39]  Alun Hubbard,et al.  Greenland ice sheet motion coupled with daily melting in late summer , 2009 .

[40]  E. Rignot,et al.  Changes in the Velocity Structure of the Greenland Ice Sheet , 2006, Science.

[41]  Ian M. Howat,et al.  Greenland flow variability from ice-sheet-wide velocity mapping , 2010, Journal of Glaciology.

[42]  R. Alley,et al.  Brief communication Greenland's shrinking ice cover: "fast times" but not that fast , 2011 .

[43]  C. J. P. P. Smeets,et al.  Large and Rapid Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice Sheet , 2008, Science.

[44]  J. Hansen,et al.  GLOBAL SURFACE TEMPERATURE CHANGE , 2010 .

[45]  X. Fettweis,et al.  Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn , 2012, Nature.

[46]  Cathy Connor,et al.  Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. , 2003, Annals of Glaciology.

[47]  Timothy P. Boyer,et al.  Warming of the world ocean, 1955–2003 , 2005 .

[48]  Hugues Goosse,et al.  Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century: IMPLICATIONS OF CHANGES IN FRESHWATER FLUX , 2003 .

[49]  J. Box Survey of Greenland instrumental temperature records: 1873–2001 , 2002 .

[50]  Eduardo Zorita,et al.  Reconstructing Past Climate from Noisy Data , 2004, Science.

[51]  E. Mosley‐Thompson,et al.  Greenland Ice Sheet Mass Balance Reconstruction. Part I: Net Snow Accumulation (1600–2009) , 2013 .

[52]  Sheng-Hung Wang,et al.  Greenland Ice Sheet Surface Mass Balance Variability (1988–2004) from Calibrated Polar MM5 Output* , 2006 .

[53]  J. Gregory,et al.  Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations , 2004 .

[54]  Harihar Rajaram,et al.  An increase in crevasse extent, West Greenland: Hydrologic implications , 2011 .

[55]  Calving on tidewater glaciers amplified by submarine frontal melting , 2012 .

[56]  Harihar Rajaram,et al.  Cryo‐hydrologic warming: A potential mechanism for rapid thermal response of ice sheets , 2010 .

[57]  Harihar Rajaram,et al.  Evaluation of cryo‐hydrologic warming as an explanation for increased ice velocities in the wet snow zone, Sermeq Avannarleq, West Greenland , 2013 .

[58]  K. Steffen,et al.  The annual glaciohydrology cycle in the ablation zone of the Greenland ice sheet: Part 1. Hydrology model , 2011, Journal of Glaciology.

[59]  R. Thomas,et al.  Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbræ, Greenland , 2004, Journal of Glaciology.

[60]  T. Murray,et al.  Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes , 2010 .

[61]  S. Swenson,et al.  Accuracy of GRACE mass estimates , 2006 .

[62]  M. R. van den Broeke,et al.  Twenty-one years of mass balance observations along the K-transect, West Greenland , 2012 .

[63]  Gert König-Langlo,et al.  Global dimming and brightening: An update beyond 2000 , 2009 .

[64]  D. Benn,et al.  Calving processes and the dynamics of calving glaciers , 2007 .

[65]  Ian M. Howat,et al.  Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. , 2009 .