On optimal control over networks with lossy links

The topic of this diploma thesis is optimal control of linear, discretetime, time invariant systems over communication networks. It is assumed that the plant and controller are connected with a lossy network. So, there is no reliable, deterministic communication possible and the seperation principle does not hold. However, under certain conditions the controller minimizing the quadratic cost criterion can be obtained. It is shown that this controller is linear and uses the optimal estimates of the Kalman filter. In addition, for the general case a linear, suboptimal controller is derived. Furthermore, stability criterions, robustness issues and packet retransmission are analyzed. Some examples are used to illustrate the results. Das Thema dieser Diplomarbeit ist optimale Regelung von linearen, zeitdiskreten, zeitinvarianten Systemen uber Kommunikationsnetze. Es wird angenommen, dass der Regler und die Regelstrecke mit einem verlustbehafteten Netzwerk verbunden sind. Somit existiert keine zuverlassige, deterministische Kommunikationsmoglichkeit und das Seperationsprinzip gilt nich. Dennoch kann der Regler, welcher das Quadratische Gutekriterium minimiert, unter bestimmten Bedingungen ermittelt werden. Es wird gezeigt, dass der Regler linear ist und die optimale Schatzungen des Kalmanfilter verwendet wird. Zusatzlich wird fur den allgemeinen Fall ein linearer, suboptimaler Regler hergeleitet. Ferner werden Stabilitatskriterien, Robustheitsfragen und erneutes Ubertragen von Packeten untersucht. Zur Veranschaulichung der Ergebnisse werden Beispiele verwendet.

[1]  Tamer Basar,et al.  Optimal control of LTI systems over unreliable communication links , 2006, Autom..

[2]  Andrea J. Goldsmith,et al.  Ieee Copyright Statement: Lqg Control for Distributed Systems over Tcp-like Erasure Channels , 2022 .

[3]  K. Poolla,et al.  Optimal Linear LQG Control Over Lossy Networks Without Packet Acknowledgment , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[4]  Hans-Jürgen Küfner Einführung in die Steuerungstechnik , 1995 .

[5]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[6]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control 3rd Edition, Volume II , 2010 .

[7]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[8]  Michael Cw Kintner-Meyer Opportunities of Wireless Sensors and Controls for Building Operation , 2005 .

[9]  Bruno Sinopoli,et al.  Kalman filtering with intermittent observations , 2004, IEEE Transactions on Automatic Control.

[10]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[11]  Alberto Leon-Garcia,et al.  Communication Networks , 2000 .

[12]  S. Sastry,et al.  Optimal control with unreliable communication: the TCP case , 2005, Proceedings of the 2005, American Control Conference, 2005..

[13]  W. L. Koning,et al.  Compensatability and optimal compensation of systems with white parameters , 1992 .

[14]  C. Scherer,et al.  Linear Matrix Inequalities in Control , 2011 .

[15]  Bruno Sinopoli,et al.  Foundations of Control and Estimation Over Lossy Networks , 2007, Proceedings of the IEEE.

[16]  Johan Nilsson,et al.  Real-Time Control Systems with Delays , 1998 .

[17]  Emanuele Garone,et al.  LQG control over lossy TCP-like networks with probabilistic packet acknowledgements , 2008, 2008 47th IEEE Conference on Decision and Control.

[18]  Jeff Wills Will HVAC Control Go Wireless , 2004 .

[19]  Katsuhiko Ogata,et al.  Discrete-time control systems , 1987 .

[20]  A. Goldsmith,et al.  Kalman filtering with partial observation losses , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[21]  W. L. De Koning,et al.  Infinite horizon optimal control of linear discrete time systems with stochastic parameters , 1982, Autom..

[22]  T. Kailath,et al.  Array Algorithms for Estimation , 2000 .