BEOL Cu CMP Process Evaluation for Advanced Technology Nodes

[1]  A. Jindal,et al.  Effect of pH on CMP of copper and tantalum , 2004 .

[2]  Ronald A. Carpio,et al.  Initial study on copper CMP slurry chemistries , 1995 .

[3]  S. Babu,et al.  Chemical Mechanical Polishing of Copper and Tantalum in Potassium Iodate-Based Slurries , 2001 .

[4]  I. Suni,et al.  Potassium Bromate as an Oxidizing Agent in a Titania-Based Ru CMP Slurry , 2010 .

[5]  S. Chiu,et al.  Nitric acid-based slurry with citric acid as an inhibitor for copper chemical mechanical polishing , 1999 .

[6]  Ronald J. Gutmann,et al.  Chemical Mechanical Planarization of Microelectronic Materials , 1997 .

[7]  Yuzhuo Li,et al.  Novel Pure Organic Particles for Copper CMP at Low Down Force , 2004 .

[8]  Y. Obeng,et al.  Chemical Mechanical Planarization of Copper: Role of Oxidants and Inhibitors , 2004 .

[9]  M. Fayolle,et al.  Copper CMP evaluation: planarization issues , 1997 .

[10]  Gottlieb S. Oehrlein,et al.  Surface Chemistry Studies of Copper Chemical Mechanical Planarization , 2001 .

[11]  V. Desai,et al.  The combinatorial effect of complexing agent and inhibitor on chemical-mechanical planarization of copper , 2004 .

[12]  S. Kondo,et al.  Abrasive-Free Polishing for Copper Damascene Interconnection , 2000 .

[13]  D. Edelstein,et al.  Mechanism of Co Liner as Enhancement Layer for Cu Interconnect Gap-Fill , 2013 .

[14]  Hideaki Takahashi,et al.  Characteristics of Abrasive-Free Micelle Slurry for Copper CMP , 2003 .

[15]  O. Kwon,et al.  Development of a Copper Chemical Mechanical Polishing Slurry at Neutral pH Based on Ceria Slurry , 2010 .

[16]  D. Edelstein,et al.  Characterization of “Ultrathin-Cu”/Ru(Ta)/TaN Liner Stack for Copper Interconnects , 2010, IEEE Electron Device Letters.

[17]  Oliver Huang,et al.  Application of Real-Time Cu Thickness Profile Control in Cu CMP , 2012 .

[18]  Y. Li,et al.  Chemical–mechanical polishing of copper and tantalum with silica abrasives , 2001 .

[19]  S. Ramarajan,et al.  Modification of the Preston equation for the chemical-mechanical polishing of copper , 1998 .

[20]  S. Langhoff,et al.  On the 1A1–3B1 separation in CH2 and SiH2 , 1987 .

[21]  Gottlieb S. Oehrlein,et al.  Chemical Mechanical Planarization of Copper Damascene Structures , 2000 .

[22]  S. Seal,et al.  Mechanism of Copper Removal during CMP in Acidic H 2 O 2 Slurry , 2004 .

[23]  Tomoji Nakamura,et al.  Chemical and Mechanical Properties of Cu Surface Reaction Layers in Cu-CMP to Improve Planarization , 2013 .

[24]  S. Babu,et al.  Role of the Functional Groups of Complexing Agents in Copper Slurries , 2006 .

[25]  D. T. Price,et al.  Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics , 1995 .

[26]  J. Talbot,et al.  The Effects of Copper CMP Slurry Chemistry on the Colloidal Behavior of Alumina Abrasives , 2006 .

[27]  Michael R. Oliver,et al.  Chemical-mechanical planarization of semiconductor materials , 2004 .

[28]  T. Ohba,et al.  Cu Wettability and Diffusion Barrier Property of Ru Thin Film for Cu Metallization , 2005 .

[29]  D. Zeidler,et al.  Characterization of Cu chemical mechanical polishing by electrochemical investigations , 1997 .

[30]  S. Yen,et al.  Glycolic acid in hydrogen peroxide-based slurry for enhancing copper chemical mechanical polishing , 2005 .

[31]  Ling Wang,et al.  Effect of Hydrogen Peroxide on Oxidation of Copper in CMP Slurries Containing Glycine , 2003 .