A deep learning model incorporating spatial and temporal information successfully detects visual field worsening using a consensus based approach

[1]  Michael V. Boland,et al.  Predicting eyes at risk for rapid glaucoma progression based on an initial visual field test using machine learning , 2021, PloS one.

[2]  Michael V. Boland,et al.  Assessing Glaucoma Progression Using Machine Learning Trained on Longitudinal Visual Field and Clinical Data. , 2020, Ophthalmology.

[3]  Felipe A. Medeiros,et al.  A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression , 2020, Translational vision science & technology.

[4]  A. Afifi,et al.  Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression , 2019, Translational vision science & technology.

[5]  Jiwoong Lee,et al.  Visual Field Prediction using Recurrent Neural Network , 2019, Scientific Reports.

[6]  Lucy Q. Shen,et al.  Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms. , 2019, Ophthalmology.

[7]  Peter J. Bex,et al.  An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis , 2019, Investigative ophthalmology & visual science.

[8]  Siamak Yousefi,et al.  Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning. , 2018, American journal of ophthalmology.

[9]  Yue Wu,et al.  Forecasting future Humphrey Visual Fields using deep learning , 2018, bioRxiv.

[10]  R. Weinreb,et al.  Asymmetric Patterns of Visual Field Defect in Primary Open-Angle and Primary Angle-Closure Glaucoma. , 2018, Investigative ophthalmology & visual science.

[11]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[12]  Michael V. Boland,et al.  Evidence-based Criteria for Assessment of Visual Field Reliability. , 2017, Ophthalmology.

[13]  Alberto Diniz-Filho,et al.  Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients. , 2017, Ophthalmology.

[14]  Michael V. Boland,et al.  Prevalence of Glaucoma in the United States: The 2005–2008 National Health and Nutrition Examination Survey , 2016, Investigative ophthalmology & visual science.

[15]  Christopher Bowd,et al.  Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields , 2016, Translational vision science & technology.

[16]  T. Wong,et al.  Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. , 2014, Ophthalmology.

[17]  Y. Kawasaki,et al.  COMPARISON OF FIVE EXACT CONFIDENCE INTERVALS FOR THE BINOMIAL PROPORTION , 2014 .

[18]  F. Medeiros,et al.  The pathophysiology and treatment of glaucoma: a review. , 2014, JAMA.

[19]  Richard A. Russell,et al.  A survey of attitudes of glaucoma subspecialists in England and Wales to visual field test intervals in relation to NICE guidelines , 2013, BMJ Open.

[20]  H. Rao,et al.  Agreement between event-based and trend-based glaucoma progression analyses , 2013, Eye.

[21]  Richard A. Russell,et al.  The relationship between variability and sensitivity in large-scale longitudinal visual field data. , 2012, Investigative ophthalmology & visual science.

[22]  Tzyy-Ping Jung,et al.  Progression of patterns (POP): a machine classifier algorithm to identify glaucoma progression in visual fields. , 2012, Investigative ophthalmology & visual science.

[23]  J. Caprioli,et al.  Influence of visual field testing frequency on detection of glaucoma progression with trend analyses. , 2011, Archives of ophthalmology.

[24]  Chris A. Johnson,et al.  Longitudinal and cross-sectional analyses of visual field progression in participants of the Ocular Hypertension Treatment Study. , 2010, Archives of ophthalmology.

[25]  G. Rebolleda,et al.  Visual field index rate and event-based glaucoma progression analysis: comparison in a glaucoma population , 2009, British Journal of Ophthalmology.

[26]  Michael Wall,et al.  Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry. , 2009, Investigative ophthalmology & visual science.

[27]  Balwantray C. Chauhan,et al.  A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients. , 2008, Ophthalmology.

[28]  Roberta McKean-Cowdin,et al.  Impact of visual field loss on health-related quality of life in glaucoma: the Los Angeles Latino Eye Study. , 2008, Ophthalmology.

[29]  A Heijl,et al.  Practical recommendations for measuring rates of visual field change in glaucoma , 2008, British Journal of Ophthalmology.

[30]  Chris A. Johnson,et al.  Comparison of different methods for detecting glaucomatous visual field progression. , 2003, Investigative ophthalmology & visual science.

[31]  M. C. Leske,et al.  Measuring visual field progression in the Early Manifest Glaucoma Trial. , 2003, Acta ophthalmologica Scandinavica.

[32]  D P Crabb,et al.  Interobserver agreement on visual field progression in glaucoma: a comparison of methods , 2003, The British journal of ophthalmology.

[33]  Wilbert B van den Hout,et al.  The area under an ROC curve with limited information. , 2003, Medical decision making : an international journal of the Society for Medical Decision Making.

[34]  Chris A Johnson,et al.  Identification of progressive glaucomatous visual field loss. , 2002, Survey of ophthalmology.

[35]  P. Lichter,et al.  The Collaborative Initial Glaucoma Treatment Study: study design, methods, and baseline characteristics of enrolled patients. , 1999, Ophthalmology.

[36]  L Brigatti,et al.  Automatic detection of glaucomatous visual field progression with neural networks. , 1997, Archives of ophthalmology.

[37]  Richard K. Morgan,et al.  Statpac 2 glaucoma change probability. , 1991, Archives of ophthalmology.

[38]  A Heijl,et al.  Test-retest variability in glaucomatous visual fields. , 1989, American journal of ophthalmology.

[39]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[40]  William J Feuer,et al.  Interobserver agreement and intraobserver reproducibility of the subjective determination of glaucomatous visual field progression. , 2011, Ophthalmology.

[41]  S. Azen,et al.  The Los Angeles Latino Eye Study , 2008 .

[42]  D. Culler,et al.  Comparison of methods , 2000 .

[43]  Advanced Glaucoma Intervention Study. 2. Visual field test scoring and reliability. , 1994, Ophthalmology.

[44]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .