Statistical arbitrage in jump-diffusion models with compound Poisson processes

We prove the existence of statistical arbitrage opportunities for jump-diffusion models of stock prices when the jump-size distribution is assumed to have finite moments. We show that to obtain statistical arbitrage, the risky asset holding must go to zero in time. Existence of statistical arbitrage is demonstrated via ‘buy-and-hold until barrier’ and ‘short until barrier’ strategies with both single and double barrier. In order to exploit statistical arbitrage opportunities, the investor needs to have a good approximation of the physical probability measure and the drift of the stochastic process for a given asset.

[1]  Winston S. Buckley,et al.  Market-reaction-adjusted optimal central bank intervention policy in a forex market with jumps , 2018, Ann. Oper. Res..

[2]  Diversified Portfolios in Continuous Time , 1996 .

[3]  Jean-Luc Prigent,et al.  On the robustness of portfolio allocation under copula misspecification , 2018, Ann. Oper. Res..

[4]  Cyrus A. Ramezani,et al.  Maximum Likelihood Estimation of Asymmetric Jump-Diffusion Processes: Application to Security Prices , 1998 .

[5]  W. P. Malcolm,et al.  Pairs trading , 2005 .

[6]  W. K. Bertram,et al.  Optimal Trading Strategies for Ito Diffusion Processes , 2009 .

[7]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[8]  Statistical arbitrage in the Black–Scholes framework , 2015 .

[9]  Jean-Luc Prigent,et al.  Mixed-asset portfolio allocation under mean-reverting asset returns , 2019, Ann. Oper. Res..

[10]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[11]  Robert A. Jarrow,et al.  Testing Market Efficiency Using Statistical Arbitrage with Applications to Momentum and Value Strategies , 2003 .

[12]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[13]  G. Vidyamurthy Pairs Trading: Quantitative Methods and Analysis , 2004 .

[14]  P. Glasserman,et al.  The Term Structure of Simple Forward Rates with Jump Risk , 2000 .

[15]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[16]  Laure Coutin,et al.  First passage time law for some Lévy processes with compound Poisson: Existence of a density , 2011 .

[17]  Hui Wang,et al.  First passage times of a jump diffusion process , 2003, Advances in Applied Probability.

[18]  Statistical arbitrage in the Black–Scholes framework , 2014, 1406.5646.

[19]  Giovanna Ferraro,et al.  Markowitz portfolio optimization through pairs trading cointegrated strategy in long-term investment , 2019, Ann. Oper. Res..

[20]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[21]  Laure Coutin,et al.  First passage time law for some jump-diffusion processes : existence of a density , 2009 .

[22]  S. Kou,et al.  Pricing Path-Dependent Options with Jump Risk via Laplace Transforms , 2005 .