Chimeras of alpha1-adrenergic receptor subtypes identify critical residues that modulate active state isomerization.
暂无分享,去创建一个
We have identified previously two amino acids, one in each of the fifth and sixth transmembrane segments of both the alpha1a-adrenergic receptor and the alpha1b-adrenergic receptor (AR), that account almost entirely for the selectivity of agonist binding by these receptor subtypes (Hwa, J., Graham, R. M., and Perez, D. M. (1995) J. Biol. Chem. 270, 23189-23195). Thus reversal of these two residues, from those found in the native receptor of one subtype to those in the other subtype, produces complementary changes in subtype selectivity of agonist binding. Here we show that mutating only one of these residues in either the alpha1b-AR or the alpha1a-AR to the corresponding residue in the other subtype (Ala204 --> Val for the alpha1b; Met292 --> Leu for the alpha1a-AR) results in chimeras that are constitutively active for signaling by both the phospholipase C and phospholipase A2 pathways. This is evident by an increased affinity for agonists, increased basal phospholipase C and phospholipase A2 activation, and increased agonist potency. Although mutation of the other residue involved in agonist binding selectivity, to the corresponding residue in the other subtype (Leu314 --> Met for the alpha1b-AR; Val185 --> Ala for the alpha1a-AR) does not alter receptor binding or signaling, per se, when combined with the corresponding constitutively activating mutations, the resulting chimeras, Ala204 --> Val/Leu314 --> Met ( alpha1b-AR) and Val185 --> Ala/Met292 --> Leu ( alpha1a-AR), display wild type ligand binding and signaling. A simple interpretation of these results is that the alpha1a- and alpha1b-ARs possess residues that critically modulate isomerization from the basal state, R, to the active state R*, and that the native receptor structures have evolved to select residues that repress active state isomerization. It is likely that the residues identified here modulate important interhelical interactions between the fifth and sixth transmembrane segments that inhibit or promote receptor signaling.