Subspace identification for nonlinear systems that are linear in unmeasured states

In this paper, we apply subspace methods to the identification of a class of multi-input multi-output (MIMO) discrete-time nonlinear time-varying systems. Specifically, we study the identification of systems that are nonlinear in measured data and linear in unmeasured states. We present numerical simulations to demonstrate the efficacy of the method.

[1]  W. E. Larimore,et al.  Generalized canonical variate analysis of nonlinear systems , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[2]  M. Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[3]  D. Bernstein,et al.  Non-linear system identification using Hammerstein and non-linear feedback models with piecewise linear static maps , 2001 .

[4]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[5]  Michel Verhaegen,et al.  A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems , 1995, Autom..

[6]  Dennis S. Bernstein,et al.  Nonlinear system identification using Hammerstein and nonlinear feedback models with piecewise linear static maps - Part 1: theory , 2000 .

[7]  J. Juang Applied system identification , 1994 .

[8]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[9]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[10]  Dennis S. Bernstein,et al.  Identification of Wiener systems with known noninvertible nonlinearities , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[11]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[12]  Manfred Deistler,et al.  Consistency and Relative Efficiency of Subspace Methods , 1994 .

[13]  Lennart Ljung,et al.  Subspace identification from closed loop data , 1996, Signal Process..

[14]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[15]  Torben Knudsen Consistency analysis of subspace identification methods based on a linear regression approach , 2001, Autom..

[16]  M. Verhaegen,et al.  Identifying MIMO Hammerstein systems in the context of subspace model identification methods , 1996 .

[17]  D. Bernstein,et al.  Nonlinear system identification using Hammerstein and nonlinear feedback models with piecewise linear static maps. 1. Theory , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).