A predictor-corrector scheme for solving the time fractional Fokker-Planck equation with uniform and non-uniform meshes

[1]  Robert J. Marks,et al.  Differintegral interpolation from a bandlimited signal's samples , 1981 .

[2]  T. Goudon,et al.  On a Fokker-Planck equation arising in population dynamics , 1998 .

[3]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[4]  J. David Logan,et al.  Transport Modeling in Hydrogeochemical Systems , 2001 .

[5]  Yujiang Wu,et al.  Efficient algorithms for solving the fractional ordinary differential equations , 2015, Appl. Math. Comput..

[6]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[7]  Mahdi Saedshoar Heris,et al.  A predictor–corrector scheme for the tempered fractional differential equations with uniform and non-uniform meshes , 2019, The Journal of Supercomputing.

[8]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[9]  D. C. Hong Effect of Excluded Volume and Anisotropy on Granular Statistics , 1999, cond-mat/9909252.

[10]  Mahdi Saedshoar Heris,et al.  On FBDF5 Method for Delay Differential Equations of Fractional Order with Periodic and Anti-Periodic Conditions , 2017 .

[11]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[12]  R. F. Escobar-Jiménez,et al.  Analytical and numerical solutions of electrical circuits described by fractional derivatives , 2016 .

[13]  Xuenian Cao,et al.  Numerical Method for The Time Fractional Fokker-Planck Equation , 2012 .

[14]  Chaozhen Wei,et al.  A Fokker–Planck reaction model for the epitaxial growth and shape transition of quantum dots , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  P Hänggi,et al.  Fractional Fokker-Planck dynamics: Numerical algorithm and simulations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Da Xu,et al.  A backward euler orthogonal spline collocation method for the time‐fractional Fokker–Planck equation , 2015 .

[17]  Mario Di Paola,et al.  Fractional characteristic times and dissipated energy in fractional linear viscoelasticity , 2016, Commun. Nonlinear Sci. Numer. Simul..

[18]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[19]  Mahdi Saedshoar Heris,et al.  On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions , 2017 .

[20]  Zhen Wang,et al.  Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay , 2011, Comput. Math. Appl..

[21]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[22]  Philippe Marcq,et al.  On the stochastic pendulum with Ornstein-Uhlenbeck noise , 2004, cond-mat/0407198.

[23]  Mohammad Javidi,et al.  A predictor-corrector scheme for solving nonlinear fractional differential equations with uniform and nonuniform meshes , 2019, Int. J. Model. Simul. Sci. Comput..

[24]  A. D. Fokker Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld , 1914 .

[25]  Yingjun Jiang A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker–Planck equation , 2015 .

[26]  E. Barkai,et al.  Fractional Fokker-Planck equation, solution, and application. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[28]  Sachin Bhalekar,et al.  A new predictor-corrector method for fractional differential equations , 2014, Appl. Math. Comput..

[29]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[30]  Masatoshi Shiino,et al.  Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Fawang Liu,et al.  Finite difference approximations for the fractional Fokker–Planck equation , 2009 .

[32]  Fan Yang,et al.  On the definition of fractional derivatives in rheology , 2011 .

[33]  H. C. Ottinger,et al.  Dynamic mean-field models from a nonequilibrium thermodynamics perspective. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Tian Jian Lu,et al.  Fractional order generalized electro-magneto-thermo-elasticity , 2013 .

[35]  M. Dehghan,et al.  The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients , 2012 .