On some optical soliton structures to the Lakshmanan-Porsezian-Daniel model with a set of nonlinearities

[1]  H. Rezazadeh,et al.  Analytical solutions to the fractional Lakshmanan–Porsezian–Daniel model , 2021, Optical and Quantum Electronics.

[2]  Xing Lü,et al.  New general interaction solutions to the KPI equation via an optional decoupling condition approach , 2021, Commun. Nonlinear Sci. Numer. Simul..

[3]  M. A. Sattar,et al.  First-principles investigations on the structural stability, thermophysical and half-metallic properties of the half-Heusler CrMnS alloy , 2021, Optical and Quantum Electronics.

[4]  H. Rezazadeh,et al.  Optical solitons of nonlinear complex Ginzburg–Landau equation via two modified expansion schemes , 2021, Optical and Quantum Electronics.

[5]  F. S. Khodadad,et al.  Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation , 2021, Optical and Quantum Electronics.

[6]  H. Rezazadeh,et al.  New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques , 2021, Optical and Quantum Electronics.

[7]  J. F. Gómez‐Aguilar,et al.  Assorted soliton structures of solutions for fractional nonlinear Schrodinger types evolution equations , 2021, Journal of Ocean Engineering and Science.

[8]  H. Rezazadeh,et al.  Solution of fractional-order Korteweg-de Vries and Burgers’ equations utilizing local meshless method , 2021, Journal of Ocean Engineering and Science.

[9]  Ghazala Akram,et al.  Bright, dark, kink, singular and periodic soliton solutions of Lakshmanan–Porsezian–Daniel model by generalized projective Riccati equations method , 2021 .

[10]  F. Gómez,et al.  Diverse Soliton Structures for Fractional Nonlinear Schrodinger Equation, KdV Equation and WBBM Equation Adopting a New Technique , 2021 .

[11]  J. F. Gómez‐Aguilar,et al.  New Solitary Wave Solutions of the Space–time Fractional Coupled Equal Width Wave Equation (CEWE) and Coupled Modified Equal Width Wave Equation (CMEWE) , 2021, International Journal of Applied and Computational Mathematics.

[12]  Fei-fei Liu,et al.  Stability and optimal control strategies for a novel epidemic model of COVID-19 , 2021, Nonlinear Dynamics.

[13]  Maria Sarfraz,et al.  Multiple optical soliton solutions for CGL equation with Kerr law nonlinearity via extended modified auxiliary equation mapping method , 2021 .

[14]  A. Seadawy Optical Soliton perturbation with fractional temporal evolution by extended modified auxiliary equation mapping , 2021 .

[15]  Xing Lü,et al.  Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients , 2021, Commun. Nonlinear Sci. Numer. Simul..

[16]  Olaniyi Samuel Iyiola,et al.  Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method , 2021, Math. Comput. Simul..

[17]  Xing Lü,et al.  Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations , 2021 .

[18]  Wen-Xiu Ma,et al.  N-soliton solutions and dynamic property analysis of a generalized three-component Hirota-Satsuma coupled KdV equation , 2021, Appl. Math. Lett..

[19]  K. U. Tariq,et al.  Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method , 2021 .

[20]  M. Belić,et al.  Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by sine-Gordon equation approach , 2021, Optik.

[21]  Xing Lü,et al.  Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types , 2021, Nonlinear Dynamics.

[22]  Xing Lü,et al.  Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws , 2020, Commun. Nonlinear Sci. Numer. Simul..

[23]  M. Belić,et al.  Cubic�quartic optical solitons in Lakshmanan�Porsezian�Daniel model derived with semi-inverse variational principle , 2021, Ukrainian Journal of Physical Optics.

[24]  Xing Lü,et al.  Localized characteristics of lump and interaction solutions to two extended Jimbo–Miwa equations , 2020 .

[25]  S. Amiranashvili,et al.  Stabilization of Optical Pulse Transmission by Exploiting Fiber Nonlinearities , 2020, Journal of Lightwave Technology.

[26]  Z. Lindo Transoceanic dispersal of terrestrial species by debris rafting , 2020, Ecography.

[27]  Abdullah Al-Mamun Bulbul,et al.  PCF Based Formalin Detection by Exploring the Optical Properties in THz Regime , 2020 .

[28]  J. Henderson,et al.  New evidence for the transcontinental spread of early faience , 2020 .

[29]  G. Akram,et al.  The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity , 2020 .

[30]  Qian Ma,et al.  Information Metamaterials: bridging the physical world and digital world , 2020, PhotoniX.

[31]  Mostafa M. A. Khater,et al.  New exact traveling wave solutions of biological population model via the extended rational sinh-cosh method and the modified Khater method , 2019, Modern Physics Letters B.

[32]  H. Inegbedion,et al.  Modelling brand loyalty in the Nigerian telecommunications industry , 2019 .

[33]  G. Akram,et al.  Exact solitary wave solutions by extended rational sine-cosine and extended rational sinh-cosh techniques , 2019, Physica Scripta.

[34]  Aly R. Seadawy,et al.  Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear Schrödinger equation in nonlinear optics , 2019, Modern Physics Letters B.

[35]  E. Zayed,et al.  Optical solitons and other solutions to Biswas–Arshed equation using the extended simplest equation method , 2019, Optik.

[36]  N. Kudryashov The Painlevé approach for finding solitary wave solutions of nonlinear nonintegrable differential equations , 2019, Optik.

[37]  M. Belić,et al.  Solitons in optical fiber Bragg gratings with dispersive reflectivity by extended trial function method , 2019, Optik.

[38]  D. Lu,et al.  M-shaped rational solitons and their interaction with kink waves in the Fokas–Lenells equation , 2019, Physica Scripta.

[39]  Mostafa M. A. Khater,et al.  Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method , 2019, AIP Advances.

[40]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[41]  A. Sonmezoglu,et al.  Optical solitons with Biswas-Arshed equation by extended trial function method , 2019, Optik.

[42]  Mostafa M. A. Khater,et al.  Modified Auxiliary Equation Method versus Three Nonlinear Fractional Biological Models in Present Explicit Wave Solutions , 2018, Mathematical and Computational Applications.

[43]  Anjan Biswas,et al.  Interaction properties of solitonics in inhomogeneous optical fibers , 2018, Nonlinear Dynamics.

[44]  M. Eslami,et al.  Optical solitons of Lakshmanan–Porsezian–Daniel model with a couple of nonlinearities , 2018, Optik.

[45]  Nicolas Ginot,et al.  Short pulse transmission for SiC communicating Gate Driver under high dv/dt , 2018 .

[46]  M. Belić,et al.  Optical solitons with Lakshmanan–Porsezian–Daniel model by modified extended direct algebraic method , 2018, Optik.

[47]  M. Belić,et al.  Optical solitons for Lakshmanan–Porsezian–Daniel model by modified simple equation method , 2018 .

[48]  Wei Li,et al.  A program to calculate pulse transmission responses through transversely isotropic media , 2018, Comput. Geosci..

[49]  Syed Tahir Raza Rizvi,et al.  Optical soliton for perturbed nonlinear fractional Schrödinger equation by extended trial function method , 2018 .

[50]  M. Belić,et al.  Optical solitons with Lakshmanan–Porsezian–Daniel model using a couple of integration schemes , 2018 .

[51]  K. Hosseini,et al.  New exact solutions of the coupled sine-Gordon equations in nonlinear optics using the modified Kudryashov method , 2018 .

[52]  Dipankar Kumar,et al.  Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology , 2018 .

[53]  S. El-Labany,et al.  Collision of dust ion acoustic multisolitons in a non-extensive plasma using Hirota bilinear method , 2018 .

[54]  J. Whalley,et al.  Market leadership, technological progress and relative performance in the mobile telecommunications industry , 2017 .

[55]  Aly R. Seadawy,et al.  Applications of extended simple equation method on unstable nonlinear Schrödinger equations , 2017 .

[56]  Yong Zhao,et al.  High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer , 2016 .

[57]  A. Wazwaz Gaussian solitary waves for the logarithmic-KdV and the logarithmic-KP equations , 2014 .

[58]  S. Ornes Metamaterials , 2013, Proceedings of the National Academy of Sciences.

[59]  Dirk Olbers,et al.  Ocean Dynamics , 2012 .

[60]  Hasibun Naher,et al.  The modified benjamin-bona-mahony equation via the extended generalized riccati equation mapping method , 2012 .

[61]  Zhang Yao-ming,et al.  The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq—Burgers equation , 2011 .

[62]  J. Zuo 左,et al.  The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq—Burgers equation , 2011 .

[63]  Ming-Liang Wang,et al.  The (G′/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations , 2010 .

[64]  Abdul-Majid Wazwaz,et al.  A sine-cosine method for handlingnonlinear wave equations , 2004, Math. Comput. Model..

[65]  Li Biao,et al.  Generalized Riccati equation expansion method and its application to the Bogoyavlenskii's generalized breaking soliton equation , 2003 .

[66]  J. A. Buck,et al.  Fundamentals of optical fibers , 1995 .