Improvement of resistive switching properties in ZrO2- based ReRAM with implanted metal ions

In this letter, we fabricate Cu/ZrO2:Au/Pt and Cu/ZrO2:Ti/Pt devices via implanting Au or Ti ions. We systematic investigate the resistance switching properties of the two types of metal doped ZrO2-based resistance random access memory. Compared with the undoped (Cu/ZrO2/Pt) device, the metal doped devices show free-electroforming process, narrow distribution of the switching parameters and high device yield. The formation and rupture of conductive filaments with metal ions or oxygen vacancies are suggested to be responsible for the resistive switching phenomenon. The doped Au or Ti impurities influence the distribution and concentration of metal ions or oxygen vacancies in the ZrO2 crystal lattice, improving resistance switching properties of Zr2-based ReRAM.

[1]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[2]  J. Stathis Percolation models for gate oxide breakdown , 1999 .

[3]  S. O. Park,et al.  Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[4]  I. Yoo,et al.  Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications , 2005, IEEE Electron Device Letters.

[5]  S. O. Park,et al.  Electrical observations of filamentary conductions for the resistive memory switching in NiO films , 2006 .

[6]  L. Y. Chen,et al.  Reproducible unipolar resistance switching in stoichiometric ZrO2 films , 2007 .

[7]  C. Hu,et al.  Effect of Top Electrode Material on Resistive Switching Properties of $\hbox{ZrO}_{2}$ Film Memory Devices , 2007, IEEE Electron Device Letters.

[8]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[9]  K. Tsunoda,et al.  Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3 V , 2007, 2007 IEEE International Electron Devices Meeting.

[10]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[11]  Byung Joon Choi,et al.  Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films , 2007 .

[12]  Wenlian Li,et al.  Long lasting phosphorescent properties of Ti doped ZrO2 , 2007 .

[13]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.

[14]  Xiangkang Meng,et al.  Field-induced resistive switching based on space-charge-limited current , 2007 .

[15]  R. Waser,et al.  Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere , 2008 .

[16]  Qi Liu,et al.  Resistive switching memory effect of ZrO2 films with Zr+ implanted , 2008 .

[17]  Qi Liu,et al.  Nonpolar Nonvolatile Resistive Switching in Cu Doped $\hbox{ZrO}_{2}$ , 2008, IEEE Electron Device Letters.

[18]  P. Zhou,et al.  Improvement of Resistive Switching in $\hbox{Cu}_{x} \hbox{O}$ Using New RESET Mode , 2008, IEEE Electron Device Letters.

[19]  Frederick T. Chen,et al.  Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM , 2008, 2008 IEEE International Electron Devices Meeting.

[20]  F. Zeng,et al.  Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.