Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition

Postsynthetic functionalization of metal organic frameworks (MOFs) enables the controlled, high-density incorporation of new atoms on a crystallographically precise framework. Leveraging the broad palette of known atomic layer deposition (ALD) chemistries, ALD in MOFs (AIM) is one such targeted approach to construct diverse, highly functional, few-atom clusters. We here demonstrate the saturating reaction of trimethylindium (InMe3) with the node hydroxyls and ligated water of NU-1000, which takes place without significant loss of MOF crystallinity or internal surface area. We computationally identify the elementary steps by which trimethylated trivalent metal compounds (ALD precursors) react with this Zr-based MOF node to generate a uniform and well characterized new surface layer on the node itself, and we predict a final structure that is fully consistent with experimental X-ray pair distribution function (PDF) analysis. We further demonstrate tunable metal loading through controlled number density of t...

[1]  C. Cramer,et al.  Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks. , 2015, Chemical reviews.

[2]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[3]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[4]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[5]  SonBinh T. Nguyen,et al.  Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF- Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene , 2014 .

[6]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[7]  Nicolaas A. Vermeulen,et al.  A hafnium-based metal-organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. , 2014, Journal of the American Chemical Society.

[8]  Robert M. Wallace,et al.  GaAs interfacial self-cleaning by atomic layer deposition , 2008 .

[9]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[10]  K. Chapman,et al.  Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements , 2007 .

[11]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[12]  Michael J. Katz,et al.  Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants. , 2014, Angewandte Chemie.

[13]  Simon J. L. Billinge,et al.  PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data , 2004 .

[14]  J. Gascón,et al.  Metal organic frameworks as heterogeneous catalysts , 2013 .

[15]  B. Smit,et al.  The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. , 2013, Journal of the American Chemical Society.

[16]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .

[17]  J. Hupp,et al.  MOF functionalization via solvent-assisted ligand incorporation: phosphonates vs carboxylates. , 2015, Inorganic chemistry.

[18]  Omar K Farha,et al.  Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. , 2014, Chemical communications.

[19]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[20]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[21]  L. Broadbelt,et al.  Elucidating steric effects on enantioselective epoxidation catalyzed by (salen)Mn in metal-organic frameworks , 2011 .

[22]  Jeffrey W. Elam,et al.  Low-Temperature Al 2 O 3 Atomic Layer Deposition , 2004 .

[23]  W. Lanford,et al.  Plasma‐Assisted Atomic Layer Deposition of Palladium , 2005 .

[24]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[25]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[26]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[27]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[28]  Emmanuel Tylianakis,et al.  Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. , 2013, Journal of the American Chemical Society.

[29]  S. Bent,et al.  Atomic layer deposition of ZnS via in situ production of H2S , 2010 .

[30]  M. Ratner,et al.  Catalysis by a Zinc-Porphyrin-Based Metal–Organic Framework: From Theory to Computational Design , 2012 .

[31]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[32]  R. Holze Spectroelectrochemistry, W. Kaim, A. Klein, Eds., The Royal Society of Chemistry , 2010 .

[33]  M. Vandichel,et al.  Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks. , 2012, Angewandte Chemie.

[34]  Marcin Wojdyr,et al.  Fityk: a general-purpose peak fitting program , 2010 .

[35]  Steven M. George,et al.  Al2O3 Atomic Layer Deposition with Trimethylaluminum and Ozone Studied by in Situ Transmission FTIR Spectroscopy and Quadrupole Mass Spectrometry , 2008 .

[36]  Katsuyuki Ogura,et al.  Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine , 1994 .

[37]  Mikko Ritala,et al.  Crystallinity of Inorganic Films Grown by Atomic Layer Deposition: Overview and General Trends , 2013 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  C. Knobler,et al.  Metal-organic frameworks of vanadium as catalysts for conversion of methane to acetic acid. , 2011, Inorganic chemistry.

[41]  Bernd Szyszka,et al.  Atomic Layer Deposition , 2011 .

[42]  E. Vogel,et al.  Half-cycle atomic layer deposition reaction studies of Al2O3 on In0.2Ga0.8As (100) surfaces , 2008 .

[43]  Omar K Farha,et al.  Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. , 2014, Chemical Society reviews.

[44]  K. Chapman,et al.  Selective recovery of dynamic guest structure in a nanoporous prussian blue through in situ X-ray diffraction: a differential pair distribution function analysis. , 2005, Journal of the American Chemical Society.

[45]  J. Hanson,et al.  A versatile sample‐environment cell for non‐ambient X‐ray scattering experiments , 2008 .

[46]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[47]  Steven M. George,et al.  Conformal Coating on Ultrahigh-Aspect-Ratio Nanopores of Anodic Alumina by Atomic Layer Deposition , 2003 .

[48]  G. Pourtois,et al.  Al2O3 Atomic Layer Deposition on Semiconductor Substrates , 2011 .

[49]  Wmm Erwin Kessels,et al.  Low-Temperature Deposition of TiN by Plasma-Assisted Atomic Layer Deposition , 2006 .

[50]  Michael J. Katz,et al.  Destruction of chemical warfare agents using metal-organic frameworks. , 2015, Nature materials.

[51]  Joshua Borycz,et al.  Defining the Proton Topology of the Zr6-Based Metal-Organic Framework NU-1000. , 2014, The journal of physical chemistry letters.

[52]  H. Stoll,et al.  Ab initio energy‐adjusted pseudopotentials for the noble gases Ne through Xe: Calculation of atomic dipole and quadrupole polarizabilities , 1995 .

[53]  M. Wasielewski,et al.  Bias-Switchable Permselectivity and Redox Catalytic Activity of a Ferrocene-Functionalized, Thin-Film Metal-Organic Framework Compound. , 2015, The journal of physical chemistry letters.

[54]  A. Corma,et al.  Cu and Au metal-organic frameworks bridge the gap between homogeneous and heterogeneous catalysts for alkene cyclopropanation reactions. , 2010, Chemistry.