Statistical inference and Monte Carlo algorithms
暂无分享,去创建一个
Jun S. Liu | Xiao-Li Meng | L. Wasserman | G. Casella | J. Bernardo | D. Insua | R. Strawderman | M. Wells | J. Berger | A. Dawid | E. George | J. Schafer | T. DiCiccio | P. Gustafson | J. Ferrándiz | A. Philippe | Daniel Peña | P. A. García-López | A. González | X. Meng | Anne Philippe
[1] G. Casella,et al. Post-Processing Accept-Reject Samples: Recycling and Rescaling , 1998 .
[2] George Casella,et al. Functional Compatibility, Markov Chains and Gibbs Sampling with Improper Posteriors , 1998 .
[3] A. Philippe. Processing simulation output by riemann sums , 1997 .
[4] Dipak K. Dey,et al. Overdispersed Generalized Linear Models , 1997 .
[5] L. Wasserman,et al. Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .
[6] Joseph L Schafer,et al. Analysis of Incomplete Multivariate Data , 1997 .
[7] C. Morris,et al. Hierarchical Poisson Regression Modeling , 1997 .
[8] G. Casella,et al. The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .
[9] Jun S. Liu,et al. Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..
[10] Daniel Peña,et al. Gibbs Sampling Will Fail in Outlier Problems with Strong Masking , 1996 .
[11] J. Berger,et al. Choice of hierarchical priors: admissibility in estimation of normal means , 1996 .
[12] G. Casella,et al. Rao-Blackwellisation of sampling schemes , 1996 .
[13] Y. Amit. Convergence properties of the Gibbs sampler for perturbations of Gaussians , 1996 .
[14] C. McCulloch,et al. A Note on the Existence of the Posterior Distribution for a Class of Mixed Models for Binomial Responses , 1995 .
[15] C. Geyer,et al. Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .
[16] C. Robert. Convergence Control Methods for Markov Chain Monte Carlo Algorithms , 1995 .
[17] J. Rosenthal. RATES OF CONVERGENCE FOR GIBBS SAMPLING FOR VARIANCE COMPONENT MODELS , 1995 .
[18] L. Wasserman,et al. Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio , 1995 .
[19] J. Ferrándiz,et al. Spatial interaction between neighbouring counties: cancer mortality data in Valencia Spain. , 1995, Biometrics.
[20] T. Hesterberg,et al. Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .
[21] J. Besag,et al. Bayesian Computation and Stochastic Systems , 1995 .
[22] Kerrie Mengersen,et al. [Bayesian Computation and Stochastic Systems]: Rejoinder , 1995 .
[23] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[24] D. Rubin,et al. The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence , 1994 .
[25] Jun S. Liu,et al. The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .
[26] George Casella,et al. Estimation with Selected Binomial Information or do you Really Believe that Dave Winfield is Batting .471 , 1994 .
[27] Ming-Hui Chen. Importance-Weighted Marginal Bayesian Posterior Density Estimation , 1994 .
[28] F. Samaniego,et al. Toward a Reconciliation of the Bayesian and Frequentist Approaches to Point Estimation , 1994 .
[29] D. Gianola,et al. Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs , 1994, Genetics Selection Evolution.
[30] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[31] Xiao-Li Meng,et al. On the rate of convergence of the ECM algorithm , 1994 .
[32] T. Speed,et al. Characterizing a joint probability distribution by conditionals , 1993 .
[33] Thomas J. DiCiccio,et al. Simple Modifications for Signed Roots of Likelihood Ratio Statistics , 1993 .
[34] Adrian F. M. Smith,et al. Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .
[35] Xiao-Li Meng,et al. Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .
[36] D. Gianola,et al. Marginal inferences about variance components in a mixed linear model using Gibbs sampling , 1993, Genetics Selection Evolution.
[37] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[38] G. Casella,et al. Explaining the Gibbs Sampler , 1992 .
[39] Alan E. Gelfand,et al. Bayesian statistics without tears: A sampling-resampling perspective , 1992 .
[40] Purushottam W. Laud,et al. On Bayesian Analysis of Generalized Linear Models Using Jeffreys's Prior , 1991 .
[41] William E. Strawderman,et al. A James-Stein Type Estimator for Combining Unbiased and Possibly Biased Estimators , 1991 .
[42] A. Raftery,et al. Stopping the Gibbs Sampler,the Use of Morphology,and Other Issues in Spatial Statistics (Bayesian image restoration,with two applications in spatial statistics) -- (Discussion) , 1991 .
[43] P. Diaconis,et al. Geometric Bounds for Eigenvalues of Markov Chains , 1991 .
[44] S. E. Hills,et al. Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .
[45] S. Caracciolo,et al. Nonlocal Monte Carlo algorithm for self-avoiding walks with fixed endpoints , 1990 .
[46] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[47] William D. Sudderth,et al. Coherent Inference from Improper Priors and from Finitely Additive Priors , 1989 .
[48] B. Arnold,et al. Compatible Conditional Distributions , 1989 .
[49] D. Rubin. Multiple imputation for nonresponse in surveys , 1989 .
[50] D. A. Sprott,et al. The use of a mixture model in the analysis of count data. , 1988, Biometrics.
[51] J. Berger. Statistical Decision Theory and Bayesian Analysis , 1988 .
[52] C. N. Morris,et al. The calculation of posterior distributions by data augmentation , 1987 .
[53] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[54] Reuven Y. Rubinstein,et al. Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.
[55] George E. P. Box,et al. Sampling and Bayes' inference in scientific modelling and robustness , 1980 .
[56] S. Yakowitz,et al. Weighted Monte Carlo Integration , 1978 .
[57] David C. Hoaglin,et al. The Reporting of Computation-Based Results in Statistics , 1975 .
[58] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[59] W. Strawderman. Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .
[60] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[61] B. M. Hill,et al. Inference about Variance Components in the One-Way Model , 1965 .
[62] John G. Kemeny,et al. Finite Markov chains , 1960 .
[63] Charles Stein,et al. An Example of Wide Discrepancy Between Fiducial and Confidence Intervals , 1959 .
[64] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[65] Xiao-Li Meng,et al. The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .
[66] G. Roberts,et al. Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .
[67] C. P. Robert,et al. Une implémentation du Théorème de Rao-Blackwell en simulation avec rejet , 1996 .
[68] Joong-Kweon Sohn,et al. Convergence Diagnostics for the Gibbs Sampler , 1996 .
[69] Christian P. Robert,et al. Recycling rejected values in accept-reject methods , 1995 .
[70] Jun S. Liu,et al. Covariance Structure and Convergence Rate of the Gibbs Sampler with Various Scans , 1995 .
[71] James O. Berger,et al. Bayesian Estimation of Fuel Economy Potential Due to Technology Improvements , 1993 .
[72] James O. Berger,et al. Reference Priors in a Variance Components Problem , 1992 .
[73] M. Karim. Generalized Linear Models With Random Effects , 1991 .
[74] Andrew L. Rukhin,et al. Tools for statistical inference , 1991 .
[75] James O. Berger,et al. Statistical Decision Theory and Bayesian Analysis, Second Edition , 1985 .
[76] J. Bernardo. Reference Posterior Distributions for Bayesian Inference , 1979 .
[77] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[78] M. Stone,et al. Marginalization Paradoxes in Bayesian and Structural Inference , 1973 .
[79] M. Uschold,et al. Methods and applications , 1953 .