Statistical inference and Monte Carlo algorithms

[1]  G. Casella,et al.  Post-Processing Accept-Reject Samples: Recycling and Rescaling , 1998 .

[2]  George Casella,et al.  Functional Compatibility, Markov Chains and Gibbs Sampling with Improper Posteriors , 1998 .

[3]  A. Philippe Processing simulation output by riemann sums , 1997 .

[4]  Dipak K. Dey,et al.  Overdispersed Generalized Linear Models , 1997 .

[5]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[6]  Joseph L Schafer,et al.  Analysis of Incomplete Multivariate Data , 1997 .

[7]  C. Morris,et al.  Hierarchical Poisson Regression Modeling , 1997 .

[8]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .

[9]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[10]  Daniel Peña,et al.  Gibbs Sampling Will Fail in Outlier Problems with Strong Masking , 1996 .

[11]  J. Berger,et al.  Choice of hierarchical priors: admissibility in estimation of normal means , 1996 .

[12]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[13]  Y. Amit Convergence properties of the Gibbs sampler for perturbations of Gaussians , 1996 .

[14]  C. McCulloch,et al.  A Note on the Existence of the Posterior Distribution for a Class of Mixed Models for Binomial Responses , 1995 .

[15]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[16]  C. Robert Convergence Control Methods for Markov Chain Monte Carlo Algorithms , 1995 .

[17]  J. Rosenthal RATES OF CONVERGENCE FOR GIBBS SAMPLING FOR VARIANCE COMPONENT MODELS , 1995 .

[18]  L. Wasserman,et al.  Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio , 1995 .

[19]  J. Ferrándiz,et al.  Spatial interaction between neighbouring counties: cancer mortality data in Valencia Spain. , 1995, Biometrics.

[20]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[21]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[22]  Kerrie Mengersen,et al.  [Bayesian Computation and Stochastic Systems]: Rejoinder , 1995 .

[23]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[24]  D. Rubin,et al.  The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence , 1994 .

[25]  Jun S. Liu,et al.  The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .

[26]  George Casella,et al.  Estimation with Selected Binomial Information or do you Really Believe that Dave Winfield is Batting .471 , 1994 .

[27]  Ming-Hui Chen Importance-Weighted Marginal Bayesian Posterior Density Estimation , 1994 .

[28]  F. Samaniego,et al.  Toward a Reconciliation of the Bayesian and Frequentist Approaches to Point Estimation , 1994 .

[29]  D. Gianola,et al.  Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs , 1994, Genetics Selection Evolution.

[30]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[31]  Xiao-Li Meng,et al.  On the rate of convergence of the ECM algorithm , 1994 .

[32]  T. Speed,et al.  Characterizing a joint probability distribution by conditionals , 1993 .

[33]  Thomas J. DiCiccio,et al.  Simple Modifications for Signed Roots of Likelihood Ratio Statistics , 1993 .

[34]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[35]  Xiao-Li Meng,et al.  Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .

[36]  D. Gianola,et al.  Marginal inferences about variance components in a mixed linear model using Gibbs sampling , 1993, Genetics Selection Evolution.

[37]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[38]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[39]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[40]  Purushottam W. Laud,et al.  On Bayesian Analysis of Generalized Linear Models Using Jeffreys's Prior , 1991 .

[41]  William E. Strawderman,et al.  A James-Stein Type Estimator for Combining Unbiased and Possibly Biased Estimators , 1991 .

[42]  A. Raftery,et al.  Stopping the Gibbs Sampler,the Use of Morphology,and Other Issues in Spatial Statistics (Bayesian image restoration,with two applications in spatial statistics) -- (Discussion) , 1991 .

[43]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[44]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[45]  S. Caracciolo,et al.  Nonlocal Monte Carlo algorithm for self-avoiding walks with fixed endpoints , 1990 .

[46]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[47]  William D. Sudderth,et al.  Coherent Inference from Improper Priors and from Finitely Additive Priors , 1989 .

[48]  B. Arnold,et al.  Compatible Conditional Distributions , 1989 .

[49]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[50]  D. A. Sprott,et al.  The use of a mixture model in the analysis of count data. , 1988, Biometrics.

[51]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[52]  C. N. Morris,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[53]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[55]  George E. P. Box,et al.  Sampling and Bayes' inference in scientific modelling and robustness , 1980 .

[56]  S. Yakowitz,et al.  Weighted Monte Carlo Integration , 1978 .

[57]  David C. Hoaglin,et al.  The Reporting of Computation-Based Results in Statistics , 1975 .

[58]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[59]  W. Strawderman Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .

[60]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[61]  B. M. Hill,et al.  Inference about Variance Components in the One-Way Model , 1965 .

[62]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[63]  Charles Stein,et al.  An Example of Wide Discrepancy Between Fiducial and Confidence Intervals , 1959 .

[64]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[65]  Xiao-Li Meng,et al.  The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .

[66]  G. Roberts,et al.  Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .

[67]  C. P. Robert,et al.  Une implémentation du Théorème de Rao-Blackwell en simulation avec rejet , 1996 .

[68]  Joong-Kweon Sohn,et al.  Convergence Diagnostics for the Gibbs Sampler , 1996 .

[69]  Christian P. Robert,et al.  Recycling rejected values in accept-reject methods , 1995 .

[70]  Jun S. Liu,et al.  Covariance Structure and Convergence Rate of the Gibbs Sampler with Various Scans , 1995 .

[71]  James O. Berger,et al.  Bayesian Estimation of Fuel Economy Potential Due to Technology Improvements , 1993 .

[72]  James O. Berger,et al.  Reference Priors in a Variance Components Problem , 1992 .

[73]  M. Karim Generalized Linear Models With Random Effects , 1991 .

[74]  Andrew L. Rukhin,et al.  Tools for statistical inference , 1991 .

[75]  James O. Berger,et al.  Statistical Decision Theory and Bayesian Analysis, Second Edition , 1985 .

[76]  J. Bernardo Reference Posterior Distributions for Bayesian Inference , 1979 .

[77]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[78]  M. Stone,et al.  Marginalization Paradoxes in Bayesian and Structural Inference , 1973 .

[79]  M. Uschold,et al.  Methods and applications , 1953 .