Networks with communities and clustering

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers.

[1]  M. Serrano,et al.  Percolation and epidemic thresholds in clustered networks. , 2006, Physical review letters.

[2]  Kellen Petersen August Real Analysis , 2009 .

[3]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  R. Pastor-Satorras,et al.  Generation of uncorrelated random scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Alessandro Vespignani,et al.  Absence of epidemic threshold in scale-free networks with degree correlations. , 2002, Physical review letters.

[6]  Jure Leskovec,et al.  Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters , 2008, Internet Math..

[7]  Marián Boguñá,et al.  Clustering in complex networks. I. General formalism. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Falk Schreiber,et al.  MAVisto: a tool for the exploration of network motifs , 2005, Bioinform..

[9]  Catherine S. Greenhill,et al.  The switch Markov chain for sampling irregular graphs and digraphs , 2017, Theor. Comput. Sci..

[10]  A. Martin-Löf,et al.  Generating Simple Random Graphs with Prescribed Degree Distribution , 2006, 1509.06985.

[11]  F. Radicchi,et al.  Benchmark graphs for testing community detection algorithms. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Nikolaos Fountoulakis,et al.  The probability of connectivity in a hyperbolic model of complex networks , 2016, Random Struct. Algorithms.

[14]  Fan Chung Graham,et al.  On the Spectra of General Random Graphs , 2011, Electron. J. Comb..

[15]  Edward R. Scheinerman,et al.  On Random Intersection Graphs: The Subgraph Problem , 1999, Combinatorics, Probability and Computing.

[16]  Joshua R. Wang,et al.  Finding Four-Node Subgraphs in Triangle Time , 2015, SODA.

[17]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[18]  Fan Chung Graham,et al.  Concentration Inequalities and Martingale Inequalities: A Survey , 2006, Internet Math..

[19]  Remco van der Hofstad,et al.  Heavy-tailed configuration models at criticality , 2016, 1612.00650.

[20]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.

[21]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[22]  Jérôme Kunegis,et al.  KONECT: the Koblenz network collection , 2013, WWW.

[23]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[24]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[25]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[26]  Jure Leskovec,et al.  Higher-order clustering in networks , 2017, Physical review. E.

[27]  Wiseman,et al.  Lack of self-averaging in critical disordered systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Nikolaos Fountoulakis,et al.  Percolation on Sparse Random Graphs with Given Degree Sequence , 2007, Internet Math..

[29]  Deryk Osthus,et al.  Popularity based random graph models leading to a scale-free degree sequence , 2004, Discret. Math..

[30]  Antoine Allard,et al.  The geometric nature of weights in real complex networks , 2016, Nature Communications.

[31]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[32]  Remco van der Hofstad,et al.  Switch chain mixing times and triangle counts in simple random graphs with given degrees , 2018, J. Complex Networks.

[33]  Anthony Bonato,et al.  A Spatial Web Graph Model with Local Influence Regions , 2007, Internet Math..

[34]  Marián Boguñá,et al.  Sustaining the Internet with Hyperbolic Mapping , 2010, Nature communications.

[35]  M E J Newman,et al.  Random graphs with clustering. , 2009, Physical review letters.

[36]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[37]  K. Kaski,et al.  Intensity and coherence of motifs in weighted complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[39]  A. Vázquez Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Luciano Pietronero,et al.  Absence of self-averaging and of homogeneity in the large-scale galaxy distribution , 2008, 0805.1132.

[41]  Valentas Kurauskas,et al.  Assortativity and clustering of sparse random intersection graphs , 2012, 1209.4675.

[42]  Yiming Yang,et al.  Introducing the Enron Corpus , 2004, CEAS.

[43]  Béla Bollobás,et al.  Mathematical results on scale‐free random graphs , 2005 .

[44]  J. Kertész,et al.  Structural transitions in scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[46]  Béla Bollobás,et al.  An old approach to the giant component problem , 2012, J. Comb. Theory, Ser. B.

[47]  Preetam Ghosh,et al.  Long-range degree correlations in complex networks , 2015 .

[48]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Remco van der Hofstad,et al.  Critical epidemics, random graphs, and Brownian motion with a parabolic drift , 2010, Advances in Applied Probability.

[50]  Ilkka Norros,et al.  On a conditionally Poissonian graph process , 2006, Advances in Applied Probability.

[51]  Liudmila Ostroumova,et al.  Global Clustering Coefficient in Scale-Free Networks , 2014, WAW.

[52]  Amin Saberi,et al.  Asymptotic behavior and distributional limits of preferential attachment graphs , 2014, 1401.2792.

[53]  Stefania Ottaviano,et al.  Epidemic outbreaks in two-scale community networks. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  A-L Barabási,et al.  Structure and tie strengths in mobile communication networks , 2006, Proceedings of the National Academy of Sciences.

[55]  Nicolas Broutin,et al.  Scaling limits of random graph models at criticality: Universality and the basin of attraction of the Erdős-Rényi random graph , 2014, 1411.3417.

[56]  Pol Colomer-de-Simon,et al.  Deciphering the global organization of clustering in real complex networks , 2013, Scientific Reports.

[57]  Ilkka Norros,et al.  Large Cliques in a Power-Law Random Graph , 2009, Journal of Applied Probability.

[58]  Remco van der Hofstad,et al.  Critical window for the configuration model: finite third moment degrees , 2016, 1605.02868.

[59]  Oliver Riordan,et al.  The Phase Transition in the Configuration Model , 2011, Combinatorics, Probability and Computing.

[60]  David Aldous,et al.  Brownian excursions, critical random graphs and the multiplicative coalescent , 1997 .

[61]  Svante Janson,et al.  A new approach to the giant component problem , 2007, Random Struct. Algorithms.

[62]  Ulrik Brandes,et al.  What is network science? , 2013, Network Science.

[63]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[64]  R. Hofstad,et al.  Universality for critical heavy-tailed network models: Metric structure of maximal components , 2017, Electronic Journal of Probability.

[65]  Remco van der Hofstad,et al.  Novel scaling limits for critical inhomogeneous random graphs , 2009, 0909.1472.

[66]  Shankar Bhamidi,et al.  Continuum limit of critical inhomogeneous random graphs , 2014, 1404.4118.

[67]  Piet Van Mieghem,et al.  Distances in random graphs with finite variance degrees , 2005, Random Struct. Algorithms.

[68]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[69]  Johan van Leeuwaarden,et al.  Giant component sizes in scale-free networks with power-law degrees and cutoffs , 2015, ArXiv.

[70]  Krishna P. Gummadi,et al.  On the evolution of user interaction in Facebook , 2009, WOSN '09.

[71]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Peter Bailey,et al.  Engineering a multi-purpose test collection for Web retrieval experiments , 2003, Inf. Process. Manag..

[73]  Bruce A. Reed,et al.  The Size of the Giant Component of a Random Graph with a Given Degree Sequence , 1998, Combinatorics, Probability and Computing.

[74]  Jure Leskovec,et al.  Defining and evaluating network communities based on ground-truth , 2012, Knowledge and Information Systems.

[75]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[77]  Chiara Orsini,et al.  Quantifying randomness in real networks , 2015, Nature Communications.

[78]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[79]  Aaron Clauset,et al.  Scale-free networks are rare , 2018, Nature Communications.

[80]  Harris,et al.  Absence of Self-Averaging and Universal Fluctuations in Random Systems near Critical Points. , 1996, Physical review letters.

[81]  L. Russo On the critical percolation probabilities , 1981 .

[82]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[83]  Pu Gao,et al.  Uniform generation of random graphs with power-law degree sequences , 2017, SODA.

[84]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[85]  F. Ball,et al.  Analysis of a stochastic SIR epidemic on a random network incorporating household structure. , 2010, Mathematical biosciences.

[86]  Svante Janson The Probability That a Random Multigraph is Simple , 2009, Comb. Probab. Comput..

[87]  Jure Leskovec,et al.  Higher-order organization of complex networks , 2016, Science.

[88]  János Kertész,et al.  Clustering in complex networks , 2004 .

[89]  R. Arratia,et al.  How likely is an i.i.d. degree sequence to be graphical , 2005, math/0504096.

[90]  Victor M. Preciado,et al.  Moment-Based Spectral Analysis of Random Graphs with Given Expected Degrees , 2015, IEEE Transactions on Network Science and Engineering.

[91]  N. Litvak,et al.  Limit theorems for assortativity and clustering in the configuration model with scale-free degrees , 2017 .

[92]  S. N. Dorogovtsev Clustering of correlated networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  Emilie Coupechoux,et al.  How Clustering Affects Epidemics in Random Networks , 2012, Advances in Applied Probability.

[94]  Z N Oltvai,et al.  Evolutionary conservation of motif constituents in the yeast protein interaction network , 2003, Nature Genetics.

[95]  Angel Sánchez,et al.  Mesoscopic Structure Conditions the Emergence of Cooperation on Social Networks , 2006, PloS one.

[96]  L. Stone,et al.  Generating uniformly distributed random networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  Jure Leskovec,et al.  Empirical comparison of algorithms for network community detection , 2010, WWW '10.

[98]  M. Newman,et al.  On the uniform generation of random graphs with prescribed degree sequences , 2003, cond-mat/0312028.

[99]  Liudmila Ostroumova,et al.  Generalized Preferential Attachment: Tunable Power-Law Degree Distribution and Clustering Coefficient , 2012, WAW.

[100]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[101]  Yuval Shavitt,et al.  RAGE - A rapid graphlet enumerator for large networks , 2012, Comput. Networks.

[102]  Chao Gao,et al.  Testing Network Structure Using Relations Between Small Subgraph Probabilities , 2017, ArXiv.

[103]  Charalampos E. Tsourakakis Fast Counting of Triangles in Large Real Networks without Counting: Algorithms and Laws , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[104]  Ove Frank,et al.  MOMENT PROPERTIES OF SUBGRAPH COUNTS IN STOCHASTIC GRAPHS , 1979 .

[105]  Alessandro Vespignani,et al.  Large-scale topological and dynamical properties of the Internet. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[107]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[108]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.

[109]  Piotr Sankowski,et al.  Algorithmic Complexity of Power Law Networks , 2015, SODA.

[110]  Kristina Lerman,et al.  Degree Correlations Amplify the Growth of Cascades in Networks , 2018, Physical review. E.

[111]  Peter Morters,et al.  Spatial preferential attachment networks: Power laws and clustering coefficients , 2012, 1210.3830.

[112]  S. Hakimi On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I , 1962 .

[113]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[114]  S. Taheri,et al.  Distributed maximal independent set on inhomogeneous random graphs , 2017, 2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC).

[115]  Adrien Joseph,et al.  The component sizes of a critical random graph with given degree sequence , 2010, 1012.2352.

[116]  Liudmila Ostroumova,et al.  Local Clustering Coefficient in Generalized Preferential Attachment Models , 2015, WAW.

[117]  K. Sneppen,et al.  Detection of topological patterns in complex networks: correlation profile of the internet , 2002, cond-mat/0205379.

[118]  Y. Moreno,et al.  Resilience to damage of graphs with degree correlations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[119]  Remco van der Hofstad,et al.  Universality for first passage percolation on sparse random graphs , 2012, 1210.6839.

[120]  S. N. Dorogovtsev,et al.  Pseudofractal scale-free web. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[121]  R. Pastor-Satorras,et al.  Class of correlated random networks with hidden variables. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  Marián Boguñá,et al.  Clustering in complex networks. II. Percolation properties. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[123]  Christos Faloutsos,et al.  Dynamics of large networks , 2008 .

[124]  Lisa Singh,et al.  Exploring community structure in biological networks with random graphs , 2013, BMC Bioinformatics.

[125]  Tobias Friedrich,et al.  Cliques in hyperbolic random graphs , 2015, INFOCOM.

[126]  Massimo Ostilli Fluctuation analysis in complex networks modeled by hidden-variable models: necessity of a large cutoff in hidden-variable models. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[127]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[128]  Svante Janson,et al.  On percolation in random graphs with given vertex degrees , 2008, 0804.1656.

[129]  Sebastian Wernicke,et al.  FANMOD: a tool for fast network motif detection , 2006, Bioinform..

[130]  Guido Caldarelli,et al.  Hyperbolicity Measures "Democracy" in Real-World Networks , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[131]  V. Eguíluz,et al.  Growing scale-free networks with small-world behavior. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[132]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[133]  Nikolaos Fountoulakis,et al.  On the Largest Component of a Hyperbolic Model of Complex Networks , 2015, Electron. J. Comb..

[134]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks , 2016, Cambridge Series in Statistical and Probabilistic Mathematics.

[135]  James P Gleeson,et al.  Cascades on correlated and modular random networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[136]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[137]  M. Newman,et al.  Statistical mechanics of networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[138]  Moupriya Das,et al.  Self-Averaging Fluctuations in the Chaoticity of Simple Fluids. , 2017, Physical review letters.

[139]  Jakub W. Pachocki,et al.  Scalable Motif-aware Graph Clustering , 2016, WWW.

[140]  Tobias Friedrich,et al.  Parameterized clique on inhomogeneous random graphs , 2015, Discret. Appl. Math..

[141]  Jerzy Szymanski Concentration of vertex degrees in a scale-free random graph process , 2005, Random Struct. Algorithms.

[142]  M. Newman,et al.  Why social networks are different from other types of networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[143]  Alessandro Vespignani,et al.  Correlations in complex networks , 2007 .

[144]  Svante Janson,et al.  Susceptibility in Inhomogeneous Random Graphs , 2009, Electron. J. Comb..

[145]  Pim van der Hoorn,et al.  Upper Bounds for Number of Removed Edges in the Erased Configuration Model , 2015, WAW.

[146]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[147]  Stephanie Forrest,et al.  Email networks and the spread of computer viruses. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[148]  R. Pastor-Satorras,et al.  Langevin approach for the dynamics of the contact process on annealed scale-free networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[149]  D. Bu,et al.  Topological structure analysis of the protein-protein interaction network in budding yeast. , 2003, Nucleic acids research.

[150]  Antoine Allard,et al.  The hidden hyperbolic geometry of international trade: World Trade Atlas 1870–2013 , 2015, Scientific Reports.

[151]  Wen-Xu Wang,et al.  Collective synchronization induced by epidemic dynamics on complex networks with communities. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[152]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[153]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[154]  Pim van der Hoorn,et al.  Average nearest neighbor degrees in scale-free networks , 2017, Internet Math..

[155]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[156]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[157]  Nikolaos Fountoulakis,et al.  University of Birmingham Clustering and the hyperbolic geometry of complex networks , 2015 .

[158]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[159]  M. Newman,et al.  Origin of degree correlations in the Internet and other networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[160]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[161]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[162]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[163]  Filippo Menczer,et al.  Virality Prediction and Community Structure in Social Networks , 2013, Scientific Reports.

[164]  Remco van der Hofstad,et al.  Distances in Random Graphs with Finite Mean and Infinite Variance Degrees , 2005, math/0502581.

[165]  Claudio Castellano,et al.  Defining and identifying communities in networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[166]  Diego Garlaschelli,et al.  Analytical maximum-likelihood method to detect patterns in real networks , 2011, 1103.0701.

[167]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[168]  Liudmila Ostroumova,et al.  General results on preferential attachment and clustering coefficient , 2017, Optim. Lett..

[169]  G. Caldarelli,et al.  Assortative model for social networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[170]  R Pastor-Satorras,et al.  Dynamical and correlation properties of the internet. , 2001, Physical review letters.

[171]  Remco van der Hofstad,et al.  Universality for the Distance in Finite Variance Random Graphs , 2006 .

[172]  Kevin E. Bassler,et al.  Efficient and Exact Sampling of Simple Graphs with Given Arbitrary Degree Sequence , 2010, PloS one.

[173]  Ralph Keusch,et al.  Sampling Geometric Inhomogeneous Random Graphs in Linear Time , 2017, ESA.

[174]  Nicole Eggemann,et al.  The clustering coefficient of a scale-free random graph , 2008, Discret. Appl. Math..

[175]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[176]  Willemien Kets,et al.  RANDOM INTERSECTION GRAPHS WITH TUNABLE DEGREE DISTRIBUTION AND CLUSTERING , 2009, Probability in the Engineering and Informational Sciences.

[177]  Bambi Hu,et al.  Epidemic spreading in community networks , 2005 .

[178]  A. Arenas,et al.  Models of social networks based on social distance attachment. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[179]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[180]  P. Trapman,et al.  On analytical approaches to epidemics on networks. , 2007, Theoretical population biology.

[181]  Leonid Pastur,et al.  Absence of self-averaging of the order parameter in the Sherrington-Kirkpatrick model , 1991 .

[182]  Mason A. Porter,et al.  Communities in Networks , 2009, ArXiv.

[183]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[184]  G. I. Kustova,et al.  From the author , 2019, Automatic Documentation and Mathematical Linguistics.

[185]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[186]  Tatyana S. Turova,et al.  Diffusion approximation for the components in critical inhomogeneous random graphs of rank 1. , 2009, Random Struct. Algorithms.

[187]  Uri Alon,et al.  Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs , 2004, Bioinform..

[188]  Nelly Litvak,et al.  Uncovering disassortativity in large scale-free networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[189]  Svante Janson,et al.  A simple solution to the k-core problem , 2007, Random Struct. Algorithms.

[190]  Luca Gugelmann,et al.  Random Hyperbolic Graphs: Degree Sequence and Clustering , 2012, ArXiv.

[191]  Fan Chung Graham,et al.  The Spectra of Random Graphs with Given Expected Degrees , 2004, Internet Math..

[192]  F. Schreiber,et al.  MODA: an efficient algorithm for network motif discovery in biological networks. , 2009, Genes & genetic systems.

[193]  Sergey Melnik,et al.  How clustering affects the bond percolation threshold in complex networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[194]  Christos Faloutsos,et al.  R-MAT: A Recursive Model for Graph Mining , 2004, SDM.

[195]  P. Groeneboom Brownian motion with a parabolic drift and airy functions , 1989 .

[196]  Remco van der Hofstad,et al.  Degree-Degree Dependencies in Random Graphs with Heavy-Tailed Degrees , 2014, Internet Math..

[197]  Guilin Qi,et al.  Zhishi.me - Weaving Chinese Linking Open Data , 2011, SEMWEB.

[198]  Mark E. J. Newman,et al.  Random graphs containing arbitrary distributions of subgraphs , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[199]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[200]  Frank Ball,et al.  Threshold behaviour and final outcome of an epidemic on a random network with household structure , 2008, Advances in Applied Probability.

[201]  Wei Huang,et al.  Epidemic spreading in scale-free networks with community structure , 2007 .

[202]  Marián Boguñá,et al.  Network Cosmology , 2012, Scientific Reports.

[203]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[204]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[205]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[206]  A Díaz-Guilera,et al.  Self-similar community structure in a network of human interactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[207]  Johan van Leeuwaarden,et al.  Scaling limits for critical inhomogeneous random graphs with finite third moments , 2009, 0907.4279.

[208]  Stéphane Robin,et al.  Network motifs : mean and variance for the count , 2006 .

[209]  Pol Colomer-de-Simon,et al.  Clustering of random scale-free networks , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[210]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[211]  Marcel Salathé,et al.  Dynamics and Control of Diseases in Networks with Community Structure , 2010, PLoS Comput. Biol..

[212]  Matthieu Latapy,et al.  Efficient and simple generation of random simple connected graphs with prescribed degree sequence , 2005, J. Complex Networks.

[213]  Joshua A. Grochow,et al.  Network Motif Discovery Using Subgraph Enumeration and Symmetry-Breaking , 2007, RECOMB.

[214]  Franck Picard,et al.  Assessing the Exceptionality of Network Motifs , 2007, J. Comput. Biol..

[215]  James P Gleeson,et al.  Bond percolation on a class of clustered random networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[216]  P. Van Mieghem,et al.  Influence of assortativity and degree-preserving rewiring on the spectra of networks , 2010 .

[217]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[218]  L. Prokhorenkova,et al.  Local clustering coefficients in preferential attachment models , 2016 .

[219]  Yuval Peres,et al.  Critical percolation on random regular graphs , 2007, Random Struct. Algorithms.

[220]  Eytan Domany,et al.  Finite-Size Scaling and Lack of Self-Averaging in Critical Disordered Systems , 1998 .

[221]  Zonghua Liu,et al.  How community structure influences epidemic spread in social networks , 2008 .

[222]  Mindaugas Bloznelis,et al.  Degree and clustering coefficient in sparse random intersection graphs , 2013, 1303.3388.

[223]  Remco van der Hofstad,et al.  Diameters in Preferential Attachment Models , 2007, 0705.4153.

[224]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[225]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[226]  Thomas Bläsius,et al.  Efficient Shortest Paths in Scale-Free Networks with Underlying Hyperbolic Geometry , 2018, ICALP.

[227]  Tobias Friedrich,et al.  On the average-case complexity of parameterized clique , 2015, Theor. Comput. Sci..