Spectral imbalance and the normalized dissipation rate of turbulence

The normalized turbulent dissipation rate Cϵ is studied in decaying and forced turbulence by direct numerical simulations, large-eddy simulations, and closure calculations. A large difference in the values of Cϵ is observed for the two types of turbulence. This difference is found at moderate Reynolds number, and it is shown that it persists at high Reynolds number, where the value of Cϵ becomes independent of the Reynolds number, but is still not unique. This difference can be explained by the influence of the nonlinear cascade time that introduces a spectral disequilibrium for statistically nonstationary turbulence. Phenomenological analysis yields simple analytical models that satisfactorily reproduce the numerical results. These simple spectral models also reproduce and explain the increase of Cϵ at low Reynolds number that is observed in the simulations.

[1]  B. Pearson,et al.  Measurements of the turbulent energy dissipation rate , 2002 .

[2]  Liang Shao,et al.  Subgrid modeling of anisotropic rotating homogeneous turbulence , 2005 .

[3]  C. Cambon,et al.  Nonlinear formation of structures in rotating stratified turbulence , 2005 .

[4]  K. Sreenivasan On the scaling of the turbulent energy dissipation rate , 1984 .

[5]  Z. Warhaft,et al.  On the onset of high-Reynolds-number grid-generated wind tunnel turbulence , 1996, Journal of Fluid Mechanics.

[6]  Katepalli R. Sreenivasan,et al.  An update on the energy dissipation rate in isotropic turbulence , 1998 .

[7]  Liang Shao,et al.  A new dynamic subgrid eddy viscosity model with application to turbulent channel flow , 2004 .

[8]  R. Antonia,et al.  On the normalized turbulent energy dissipation rate , 2005 .

[9]  John L. Lumley,et al.  Some comments on turbulence , 1992 .

[10]  Jean-Pierre Bertoglio,et al.  Reynolds number dependency of the scalar flux spectrum in isotropic turbulence with a uniform scalar gradient , 2005 .

[11]  F. Toschi,et al.  Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows , 2006, Journal of Fluid Mechanics.

[12]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[13]  Laurent Mydlarski,et al.  Passive scalar statistics in high-Péclet-number grid turbulence , 1998, Journal of Fluid Mechanics.

[14]  S. Orszag Analytical theories of turbulence , 1970, Journal of Fluid Mechanics.

[15]  Mitsuo Yokokawa,et al.  Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box , 2003 .

[16]  B. Geurts,et al.  Response maxima in time-modulated turbulence: Direct numerical simulations , 2005, physics/0509208.

[17]  M. Lesieur,et al.  Parameterization of Small Scales of Three-Dimensional Isotropic Turbulence Utilizing Spectral Closures , 1981 .

[18]  L. Shao,et al.  The decay of turbulence in a bounded domain , 2002 .

[19]  Shiyi Chen,et al.  Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field , 1996, Journal of Fluid Mechanics.

[20]  E. Deutsch Dispersion de particules dans une turbulence homogène isotrope stationnaire calculée par simulation numérique directe des grandes échelles , 1992 .

[21]  Javier Jiménez,et al.  The structure of intense vorticity in isotropic turbulence , 1993, Journal of Fluid Mechanics.

[22]  S. Corrsin,et al.  The use of a contraction to improve the isotropy of grid-generated turbulence , 1966, Journal of Fluid Mechanics.