The Nonlinear Gaussian Spectrum of Log-Normal Stochastic Processes and Variables

A procedure is presented in this paper for developing a representation of lognormal stochastic processes via the polynomial chaos expansion. These are processes obtained by applying the exponential operator to a gaussian process. The polynomial chaos expansion results in a representation of a stochastic process in terms of multidimensional polynomials orthogonal with respect to the gaussian measure with the dimension defined through a set of independent normalized gaussian random variables. Such a representation is useful in the context of the spectral stochastic finite element method, as well as for the analytical investigation of the mathematical properties of lognormal processes.

[1]  Shizuo Kakutani,et al.  Spectral Analysis of Stationary Gaussian Processes , 1961 .

[2]  Lawrence L. Kupper,et al.  Probability, statistics, and decision for civil engineers , 1970 .

[3]  G. Kallianpur Homogeneous chaos expansions , 1972 .

[4]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[5]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1974 .

[6]  S. Winterstein Nonlinear Vibration Models for Extremes and Fatigue , 1988 .

[7]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[8]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[9]  R. Ghanem,et al.  Boundary Element Formulation for Random Vibration Problems , 1991 .

[10]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[12]  M. Shinozuka,et al.  Simulation of Stochastic Processes by Spectral Representation , 1991 .

[13]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[14]  Pol D. Spanos,et al.  A stochastic Galerkin expansion for nonlinear random vibration analysis , 1993 .

[15]  Roger Ghanem,et al.  Stochastic Finite-Element Analysis of Soil Layers with Random Interface , 1996 .

[16]  S. D. Manning,et al.  A simple second order approximation for stochastic crack growth analysis , 1996 .

[17]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[18]  R. Ghanem,et al.  Spectral techniques for stochastic finite elements , 1997 .

[19]  G. Schuëller A state-of-the-art report on computational stochastic mechanics , 1997 .

[20]  Roger Ghanem,et al.  Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration , 1998 .

[21]  R. Ghanem Probabilistic characterization of transport in heterogeneous media , 1998 .

[22]  P. Spanos,et al.  Monte Carlo Treatment of Random Fields: A Broad Perspective , 1998 .