ON ANNIHILATIONS OF IDEALS IN SKEW MONOID RINGS

According to Jacobson (31), a right ideal is bounded if it con- tains a non-zero ideal, and Faith (15) called a ring strongly right bounded if every non-zero right ideal is bounded. From (30), a ring is strongly right AB if every non-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which sat- isfy Property (A) and the conditions asked by Nielsen (42). It is shown that for a u.p.-monoid M and � : M ! End(R) a compatible monoid homomorphism, if R is reversible, then the skew monoid ring RM is strongly right AB. If R is a strongly right AB ring, M is a u.p.-monoid and � : M ! End(R) is a weakly rigid monoid homomorphism, then the skew monoid ring RM has right Property (A).

[1]  R. Manaviyat,et al.  A GENERALIZATION OF NIL-ARMENDARIZ RINGS , 2013 .

[2]  A. Alhevaz,et al.  The McCoy Condition on Ore Extensions , 2013 .

[3]  Y. Hirano,et al.  On a Generalized Finite Intersection Property , 2012 .

[4]  Weixing Chen On Nil-semicommutative Rings , 2012 .

[5]  L. Ouyang On Weak Annihilator Ideals of Skew Monoid Rings , 2011 .

[6]  E. Hashemi Extensions of zip rings , 2010 .

[7]  G. Marks,et al.  A UNIFIED APPROACH TO VARIOUS GENERALIZATIONS OF ARMENDARIZ RINGS , 2010, Bulletin of the Australian Mathematical Society.

[8]  V. N. Dixit,et al.  Skew Monoid Rings over Zip Rings , 2010 .

[9]  Dinesh Khurana,et al.  On Unit-Central Rings , 2010 .

[10]  Yang Lee,et al.  EXTENSIONS OF McCOY'S THEOREM , 2009, Glasgow Mathematical Journal.

[11]  A. Moussavi,et al.  ON WEAKLY RIGID RINGS , 2009, Glasgow Mathematical Journal.

[12]  Yang Lee,et al.  ON RINGS WHOSE RIGHT ANNIHILATORS ARE BOUNDED , 2009, Glasgow Mathematical Journal.

[13]  N. Mahdou,et al.  On Armendariz rings. , 2009 .

[14]  Pace P. Nielsen,et al.  McCoy rings and zero-divisors , 2008 .

[15]  Yiqiang Zhou,et al.  A unified approach to the Armendariz property of polynomial rings and power series rings , 2008 .

[16]  Yang Lee,et al.  Rings with Property (A) and their extensions , 2007 .

[17]  Paul Garrett,et al.  Commutative rings I , 2007 .

[18]  Pace P. Nielsen Semi-commutativity and the McCoy condition , 2006 .

[19]  A. Moussavi,et al.  Polynomial extensions of quasi-Baer rings , 2005 .

[20]  A. Moussavi,et al.  ON (α, δ)-SKEW ARMENDARIZ RINGS , 2005 .

[21]  G. Birkenmeier,et al.  Triangular matrix representations of ring extensions , 2003 .

[22]  T. Kwak,et al.  On Skew Armendariz Rings , 2003 .

[23]  G. Marks Reversible and symmetric rings , 2002 .

[24]  Y. Hirano On annihilator ideals of a polynomial ring over a noncommutative ring , 2002 .

[25]  F. Azarpanah,et al.  On ideals consisting entirely of zero divisors , 2000 .

[26]  D. D. Anderson,et al.  Armendariz rings and gaussian rings , 1998 .

[27]  J. Krempa Some examples of reduced rings , 1996 .

[28]  S. Farbman The Unique Product Property of Groups and Their Amalgamated Free Products , 1995 .

[29]  W. Xue On strongly right bounded finite rings II , 1991, Bulletin of the Australian Mathematical Society.

[30]  W. Xue Structure of minimal noncommutative duo rings and minimal strongly bounded non-duo rings , 1992 .

[31]  W. Xue On strongly right bounded finite rings , 1991, Bulletin of the Australian Mathematical Society.

[32]  Faith Carl Annihilator ideals, associated primes and kasch-mccoy commutative rings , 1991 .

[33]  C. Faith Rings with zero intersection property on annihilators : zip rings. , 1989 .

[34]  J. Huckaba Commutative Rings with Zero Divisors , 1988 .

[35]  R. P. Tucci,et al.  Homomorphic images and the singular ideal of a strongly right bounded ring , 1988 .

[36]  T. G. Lucas Two annihilator conditions:property(A)and(A.C.) , 1986 .

[37]  C. Faith Commutative FPF rings arising as split-null extensions , 1984 .

[38]  J. Keller,et al.  Annihilation of ideals in commutative rings. , 1979 .

[39]  J. Huckaba,et al.  The generalized Kronecker function ring and the ring R(X). , 1977 .

[40]  J. Zelmanowitz The finite intersection property on annihilator right ideals , 1976 .

[41]  W. D. Blair,et al.  Rings whose faithful left ideals are cofaithful. , 1975 .

[42]  E. Armendariz A note on extensions of Baer and P. P. -rings , 1974, Journal of the Australian Mathematical Society.

[43]  Y. Quentel Sur la compacit du spectre minimal d''''un anneau , 1971 .

[44]  H. Bell Near-rings in which each element is a power of itself , 1970, Bulletin of the Australian Mathematical Society.

[45]  Melvin Henriksen,et al.  The Space of Minimal Prime Ideals of a Commutative Ring , 1965 .

[46]  M. Drazin Rings with Central Idempotent or Nilpotent Elements , 1958 .

[47]  E. Feller Properties of primary noncommutative rings , 1958 .

[48]  W. D. Munn,et al.  On semigroup algebras , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[49]  Michael Patrick. O'Donnell,et al.  Theory of rings , 1952 .