Strategies to improve early diagnosis in glaucoma.

Early diagnosis and treatment of glaucoma is important to reduce the risk of progressive and irreversible visual loss. The key to diagnosis is recognition of morphological changes to the optic nerve head and retinal nerve fiber layer, but in some patients, functional abnormalities are detected first. This review describes recent innovations with the potential to improve the early detection of glaucoma. Developments in imaging include novel optic nerve head metrics such as Bruch's membrane opening-minimum rim width, enhanced ability to quantify inner layers of the glaucomatous macula, and ability to image deep optic nerve head structures, including the lamina cribrosa. Developments in detection of early glaucomatous functional loss include novel perimetric tests using frequency-doubling technology and flicker-defined form stimuli. Methods to combine results of structural and functional assessments are also presented that may improve early detection of glaucoma.

[1]  Anthony J Correnti,et al.  Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. , 2003, Ophthalmology.

[2]  Jean-Claude Mwanza,et al.  Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. , 2012, Ophthalmology.

[3]  Robert N Weinreb,et al.  Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. , 2013, Investigative ophthalmology & visual science.

[4]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991, LEOS '92 Conference Proceedings.

[5]  Robert N Weinreb,et al.  Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss. , 2014, Ophthalmology.

[6]  Hiroshi Ishikawa,et al.  Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans , 2012, British Journal of Ophthalmology.

[7]  Ronnie George,et al.  Determinants of glaucoma awareness and knowledge in urban Chennai , 2009, Indian journal of ophthalmology.

[8]  Robert N Weinreb,et al.  Lamina cribrosa depth in healthy eyes. , 2014, Investigative ophthalmology & visual science.

[9]  R. T. Hart,et al.  The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage , 2005, Progress in Retinal and Eye Research.

[10]  Donald C. Hood,et al.  A framework for comparing structural and functional measures of glaucomatous damage , 2007, Progress in Retinal and Eye Research.

[11]  Lin Wang,et al.  Relationship between orbital optic nerve axon counts and retinal nerve fiber layer thickness measured by spectral domain optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[12]  B. Bengtsson,et al.  Performance of time-domain and spectral-domain Optical Coherence Tomography for glaucoma screening , 2012, Acta ophthalmologica.

[13]  Robert N Weinreb,et al.  Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. , 2006, Investigative ophthalmology & visual science.

[14]  B. Bengtsson,et al.  Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs. , 2006, Ophthalmology.

[15]  H. Quigley Identification of glaucoma-related visual field abnormality with the screening protocol of frequency doubling technology. , 1998, American journal of ophthalmology.

[16]  Kyung Rim Sung,et al.  Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. , 2009, Archives of ophthalmology.

[17]  F. Medeiros,et al.  The pathophysiology and treatment of glaucoma: a review. , 2014, JAMA.

[18]  G. Wollstein,et al.  Identification of early glaucoma cases with the scanning laser ophthalmoscope. , 1998, Ophthalmology.

[19]  F. Medeiros,et al.  Prediction of functional loss in glaucoma from progressive optic disc damage. , 2009, Archives of ophthalmology.

[20]  Lindsey S. Folio,et al.  Three-Dimensional Spectral-Domain Optical Coherence Tomography Data Analysis for Glaucoma Detection , 2013, PloS one.

[21]  F. Medeiros,et al.  Heidelberg Edge Perimetry for the Detection of Early Glaucomatous Damage: A Case Report , 2013, Case Reports in Ophthalmology.

[22]  C. Johnson,et al.  Screening for glaucomatous visual field loss with frequency-doubling perimetry. , 1997, Investigative ophthalmology & visual science.

[23]  M. Nicolela,et al.  Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. , 2009, Ophthalmology.

[24]  C. Cheung,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography a study on diagnostic agreement with Heidelberg Retinal Tomograph. , 2010, Ophthalmology.

[25]  Małgorzata Mulak,et al.  Heidelberg edge perimeter employment in glaucoma diagnosis--preliminary report. , 2012, Advances in clinical and experimental medicine : official organ Wroclaw Medical University.

[26]  Robert Ritch,et al.  Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. , 2012, Ophthalmology.

[27]  B. Chauhan,et al.  Diffuse loss of sensitivity in early glaucoma. , 1999, Investigative ophthalmology & visual science.

[28]  Masanori Hangai,et al.  A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[29]  M. Nicolela,et al.  Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. , 2013, Ophthalmology.

[30]  Youngrok Lee,et al.  Glaucoma Diagnostic Capabilities of Optic Nerve Head Parameters as Determined by Cirrus HD Optical Coherence Tomography , 2012, Journal of glaucoma.

[31]  J. Katz,et al.  Sensitivity and specificity of the StratusOCT for perimetric glaucoma. , 2005, Ophthalmology.

[32]  Chris A. Johnson,et al.  Frequency doubling technology perimetry for detection of glaucomatous visual field loss. , 2000, American journal of ophthalmology.

[33]  J. Kremers,et al.  Perimetric measurements with flicker-defined form stimulation in comparison with conventional perimetry and retinal nerve fiber measurements. , 2014, Investigative ophthalmology & visual science.

[34]  N. Strouthidis,et al.  Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma. , 2014, Investigative ophthalmology & visual science.

[35]  E. E. Hartmann,et al.  The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[36]  A. Rotchford,et al.  Temba glaucoma study: a population-based cross-sectional survey in urban South Africa. , 2003, Ophthalmology.

[37]  Robert N Weinreb,et al.  Estimating the rate of retinal ganglion cell loss in glaucoma. , 2012, American journal of ophthalmology.

[38]  I. Schmidtmann,et al.  Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography , 2011, Graefe's Archive for Clinical and Experimental Ophthalmology.

[39]  Earl L. Smith,et al.  Neural losses correlated with visual losses in clinical perimetry. , 2004, Investigative ophthalmology & visual science.

[40]  P. Kaufman,et al.  Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma , 2003, Progress in Retinal and Eye Research.

[41]  Robert N Weinreb,et al.  Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. , 2005, American journal of ophthalmology.

[42]  Douglas R. Anderson,et al.  Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. , 2011, Ophthalmology.

[43]  P A Sample,et al.  Color perimetry for assessment of primary open-angle glaucoma. , 1990, Investigative ophthalmology & visual science.

[44]  Chris A. Johnson,et al.  The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. , 2002 .

[45]  Shu Liu,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. , 2012, Ophthalmology.

[46]  Richard A. Russell,et al.  Structure-function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients. , 2012, Investigative ophthalmology & visual science.

[47]  J. Jonas,et al.  Ophthalmoscopic evaluation of the optic nerve head. , 1999, Survey of ophthalmology.

[48]  G. Wollstein,et al.  Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. , 2000, Ophthalmology.

[49]  F. Medeiros,et al.  A combined index of structure and function for staging glaucomatous damage. , 2012, Archives of ophthalmology.

[50]  Robert N Weinreb,et al.  Association between scanning laser polarimetry measurements using variable corneal polarization compensation and visual field sensitivity in glaucomatous eyes. , 2003, Archives of ophthalmology.

[51]  L. Zangwill,et al.  Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. , 2001, Archives of ophthalmology.

[52]  Valter Torri,et al.  Results of the European Glaucoma Prevention Study. , 2005, Ophthalmology.

[53]  Robert N Weinreb,et al.  Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. , 2011, Ophthalmology.

[54]  Robert N Weinreb,et al.  Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. , 2011, Ophthalmology.

[55]  R. M. Boynton,et al.  Isolating the color vision loss in primary open-angle glaucoma. , 1988, American journal of ophthalmology.

[56]  F. Medeiros,et al.  Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. , 2004, Archives of ophthalmology.

[57]  Donald L Budenz,et al.  Prevalence of glaucoma in an urban West African population: the Tema Eye Survey. , 2011, JAMA ophthalmology.

[58]  H. Quigley,et al.  Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. , 2000, Investigative ophthalmology & visual science.

[59]  Dong Myung Kim,et al.  Diagnostic Ability of Spectral-domain Versus Time-domain Optical Coherence Tomography in Preperimetric Glaucoma , 2014, Journal of glaucoma.

[60]  F. Medeiros,et al.  Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. , 2005, American journal of ophthalmology.

[61]  Bo Wang,et al.  Recent advances in OCT imaging of the lamina cribrosa , 2014, British Journal of Ophthalmology.

[62]  R. Weinreb,et al.  Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness. , 1990, Archives of ophthalmology.

[63]  Gadi Wollstein,et al.  Imaging of the Lamina Cribrosa in Glaucoma: Perspectives of Pathogenesis and Clinical Applications , 2013, Current eye research.

[64]  H. Hussin,et al.  Clinical evaluation of frequency doubling technology perimetry using the Humphrey Matrix 24-2 threshold strategy , 2005, British Journal of Ophthalmology.

[65]  Barry B. Lee,et al.  An examination of physiological mechanisms underlying the frequency-doubling illusion. , 2002, Investigative ophthalmology & visual science.

[66]  Robert W Knighton,et al.  Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. , 2002, Archives of ophthalmology.

[67]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[68]  R. Weinreb,et al.  Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression. , 2013, Ophthalmology.

[69]  A. Tafreshi,et al.  Incorporating risk factors to improve the assessment of rates of glaucomatous progression. , 2012, Investigative ophthalmology & visual science.

[70]  Makoto Nakamura,et al.  Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma. , 2013, Investigative ophthalmology & visual science.

[71]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[72]  A. Coleman,et al.  Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. , 2002, Investigative ophthalmology & visual science.

[73]  Wing-Ho Yung,et al.  Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. , 2005, Ophthalmology.

[74]  A. Turpin,et al.  Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement. , 2014, Investigative ophthalmology & visual science.

[75]  William J Feuer,et al.  Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. , 2009, Ophthalmology.

[76]  F. Medeiros,et al.  Evaluation of progressive neuroretinal rim loss as a surrogate end point for development of visual field loss in glaucoma. , 2014, Ophthalmology.

[77]  Andrew Carkeet,et al.  Motion perception in glaucoma patients: a review. , 2003, Survey of ophthalmology.

[78]  Mitra Sehi,et al.  Diagnostic ability of Fourier-domain vs time-domain optical coherence tomography for glaucoma detection. , 2009, American journal of ophthalmology.

[79]  Predicting progression of glaucoma from rates of frequency doubling technology perimetry change. , 2014, Ophthalmology.

[80]  Chris A. Johnson,et al.  Structure and function evaluation (SAFE): II. Comparison of optic disk and visual field characteristics. , 2003, American journal of ophthalmology.

[81]  Johannes F de Boer,et al.  Diagnostic capability of spectral-domain optical coherence tomography for glaucoma. , 2012, American journal of ophthalmology.

[82]  Robert N Weinreb,et al.  Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. , 2008, Ophthalmology.

[83]  Shu Liu,et al.  Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma. , 2011, Investigative ophthalmology & visual science.

[84]  A. Tafreshi,et al.  Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. , 2012, Ophthalmology.

[85]  F. Medeiros,et al.  Likelihood ratios for glaucoma diagnosis using spectral-domain optical coherence tomography. , 2013, American journal of ophthalmology.

[86]  Robert N Weinreb,et al.  Combining structural and functional measurements to improve detection of glaucoma progression using Bayesian hierarchical models. , 2011, Investigative ophthalmology & visual science.

[87]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[88]  F. Medeiros,et al.  Effect of disease severity on the performance of Cirrus spectral-domain OCT for glaucoma diagnosis. , 2010, Investigative ophthalmology & visual science.

[89]  Richard A. Russell,et al.  Improved estimates of visual field progression using bayesian linear regression to integrate structural information in patients with ocular hypertension. , 2012, Investigative ophthalmology & visual science.

[90]  L. Vijaya,et al.  Perimetric severity in hospital‐based and population‐based glaucoma patients , 2010, Clinical & experimental optometry.

[91]  M. Nicolela,et al.  Rates of neuroretinal rim and peripapillary atrophy area change: a comparative study of glaucoma patients and normal controls. , 2009, Ophthalmology.

[92]  R N Weinreb,et al.  Nerve fiber layer measurements with scanning laser polarimetry in ocular hypertension. , 1997, Archives of ophthalmology.

[93]  F. Medeiros,et al.  Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness , 2009, British Journal of Ophthalmology.

[94]  Robert N. Weinreb,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. , 2010, Ophthalmology.

[95]  Chris A. Johnson,et al.  Structure and function evaluation (SAFE): I. criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP). , 2002, American journal of ophthalmology.

[96]  M. C. Leske,et al.  Awareness of incident open-angle glaucoma in a population study: the Barbados Eye Studies. , 2007, Ophthalmology.

[97]  Robert N Weinreb,et al.  Visual function-specific perimetry to identify glaucomatous visual loss using three different definitions of visual field abnormality. , 2009, Investigative ophthalmology & visual science.

[98]  R S Harwerth,et al.  Ganglion cell losses underlying visual field defects from experimental glaucoma. , 1999, Investigative ophthalmology & visual science.

[99]  Grant Cull,et al.  Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma. , 2013, Investigative ophthalmology & visual science.

[100]  R N Weinreb,et al.  Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner. , 1991, American journal of ophthalmology.

[101]  Joel S Schuman,et al.  Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. , 2003, American journal of ophthalmology.

[102]  W. Feuer,et al.  Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT. , 2012, Archives of ophthalmology.

[103]  Robert N Weinreb,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. , 2012, Ophthalmology.

[104]  A J Adams,et al.  Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry. , 1993, Archives of ophthalmology.

[105]  Susan Vitale,et al.  Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. , 2009, American journal of ophthalmology.

[106]  F. Horn,et al.  Testing for glaucoma with frequency-doubling perimetry in normals, ocular hypertensives, and glaucoma patients , 2002, Graefe's Archive for Clinical and Experimental Ophthalmology.

[107]  G. Mcgwin,et al.  Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. , 2006, Investigative ophthalmology & visual science.

[108]  A. Giovannini,et al.  The macular thickness and volume in glaucoma: an analysis in normal and glaucomatous eyes using OCT. , 2002, Acta ophthalmologica Scandinavica. Supplement.

[109]  Valter Torri,et al.  European Glaucoma Prevention Study: Author reply , 2005 .

[110]  R. Pandey,et al.  Evaluation of optical coherence tomography and heidelberg retinal tomography parameters in detecting early and moderate glaucoma. , 2007, Investigative ophthalmology & visual science.

[111]  Chris A Johnson,et al.  Normative Databases for Imaging Instrumentation , 2015, Journal of glaucoma.

[112]  Robert N Weinreb,et al.  Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes. , 2013, Ophthalmology.

[113]  Donald C. Hood,et al.  Glaucomatous damage of the macula , 2013, Progress in Retinal and Eye Research.

[114]  Ki Ho Park,et al.  Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. , 2013, Investigative ophthalmology & visual science.

[115]  F. Medeiros,et al.  Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. , 2004, American journal of ophthalmology.

[116]  Dilraj S Grewal,et al.  Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography , 2013, Current opinion in ophthalmology.

[117]  F. Medeiros,et al.  A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma. , 2006, Investigative ophthalmology & visual science.

[118]  Shu Liu,et al.  Frequency-Doubling Technology Perimetry for Detection of the Development of Visual Field Defects in Glaucoma Suspect Eyes , 2013 .

[119]  H. Rao,et al.  Ganglion cell-inner plexiform layer thickness of high definition optical coherence tomography in perimetric and preperimetric glaucoma. , 2014, Investigative ophthalmology & visual science.

[120]  J. Caprioli,et al.  Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. , 2013, American journal of ophthalmology.

[121]  William H Swanson,et al.  Perimetric defects and ganglion cell damage: interpreting linear relations using a two-stage neural model. , 2004, Investigative ophthalmology & visual science.

[122]  J. D. Cascajosa,et al.  Detection of Macular Ganglion Cell Loss in Glaucoma by Fourier-Domain Optical Coherence Tomography , 2010 .

[123]  S. Graham,et al.  Detection of early visual field loss in glaucoma using frequency-doubling perimetry and short-wavelength automated perimetry. , 2003, Archives of ophthalmology.

[124]  Jost B Jonas,et al.  Clinical assessment of stereoscopic optic disc photographs for glaucoma: the European Optic Disc Assessment Trial. , 2010, Ophthalmology.

[125]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[126]  Robert N Weinreb,et al.  The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. , 2012, Investigative ophthalmology & visual science.

[127]  Eun Ji Lee,et al.  Recent structural alteration of the peripheral lamina cribrosa near the location of disc hemorrhage in glaucoma. , 2014, Investigative ophthalmology & visual science.

[128]  J. Zarranz-Ventura,et al.  Cirrus high-definition optical coherence tomography compared with Stratus optical coherence tomography in glaucoma diagnosis. , 2010, Investigative ophthalmology & visual science.

[129]  R. Harwerth,et al.  Linking structure and function in glaucoma , 2010, Progress in Retinal and Eye Research.

[130]  Michael V. Boland,et al.  Comparative Effectiveness of Treatments for Open-Angle Glaucoma: A Systematic Review for the U.S. Preventive Services Task Force , 2013, Annals of Internal Medicine.

[131]  Robert N Weinreb,et al.  Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. , 2008, Investigative ophthalmology & visual science.

[132]  R. Weinreb,et al.  Accuracy of topographic measurements in a model eye with the laser tomographic scanner. , 1991, Investigative ophthalmology & visual science.

[133]  G. Dunkelberger,et al.  Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. , 1989, American journal of ophthalmology.

[134]  Jean-Claude Mwanza,et al.  Diagnostic performance of optical coherence tomography ganglion cell--inner plexiform layer thickness measurements in early glaucoma. , 2014, Ophthalmology.

[135]  R. Weinreb,et al.  Frequency doubling technology perimetry for detection of visual field progression in glaucoma: a pointwise linear regression analysis. , 2014, Investigative ophthalmology & visual science.

[136]  J. Cairns,et al.  The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation. , 2007, Health technology assessment.

[137]  Lin Wang,et al.  Does Optic Nerve Head Surface Topography Change Prior to Loss of Retinal Nerve Fiber Layer Thickness: A Test of the Site of Injury Hypothesis in Experimental Glaucoma , 2013, PloS one.

[138]  F. Fitzke,et al.  Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. , 2000, Investigative ophthalmology & visual science.

[139]  F W Fitzke,et al.  Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma , 2000, The British journal of ophthalmology.

[140]  F. Medeiros,et al.  Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. , 2013, Ophthalmology.

[141]  Ravi Thomas,et al.  Primary open angle glaucoma. , 1990, The National medical journal of India.

[142]  J. Caprioli,et al.  Optical coherence tomography to detect and manage retinal disease and glaucoma. , 2004, American journal of ophthalmology.