A microfluidic platform to study pathogen-host interactions at single cell level

................................................................................................................................................ II LIST OF PUBLICATIONS ............................................................................................................................. IV CONTENTS ................................................................................................................................................. V LIST OF FIGURES ..................................................................................................................................... VIII LIST OF TABLES ......................................................................................................................................XVII CHAPTER 1 INTRODUCTION .................................................................................................................. 1 1.

[1]  Jerome P Ferrance,et al.  Microfluidic-based DNA purification in a two-stage, dual-phase microchip containing a reversed-phase and a photopolymerized monolith. , 2007, Analytical chemistry.

[2]  Timothy B. Stockwell,et al.  Nanoliter Reactors Improve Multiple Displacement Amplification of Genomes from Single Cells , 2007, PLoS genetics.

[3]  R. Gibson,et al.  Pathophysiology and management of pulmonary infections in cystic fibrosis. , 2003, American journal of respiratory and critical care medicine.

[4]  T. Pitt,et al.  Role of lipopolysaccharide in virulence of Pseudomonas aeruginosa , 1984, Infection and immunity.

[5]  T. Mok,et al.  Single-Molecule Detection of Epidermal Growth Factor Receptor Mutations in Plasma by Microfluidics Digital PCR in Non–Small Cell Lung Cancer Patients , 2009, Clinical Cancer Research.

[6]  Vincent Studer,et al.  A nanoliter-scale nucleic acid processor with parallel architecture , 2004, Nature Biotechnology.

[7]  Robin H. Liu,et al.  Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. , 2004, Analytical chemistry.

[8]  Ujwal S. Setlur,et al.  Development of an automated DNA purification module using a micro-fabricated pillar chip. , 2008, The Analyst.

[9]  H. Maeda,et al.  Isolation and characterization of nucleases from a clinical isolate of Serratia marcescens kums 3958. , 1983, Journal of Biochemistry (Tokyo).

[10]  Varun Reddy,et al.  Interfacial stabilization of organic-aqueous two-phase microflows for a miniaturized DNA extraction module. , 2005, Journal of colloid and interface science.

[11]  R. Jaenisch,et al.  Microfluidic Control of Cell Pairing and Fusion , 2009, Nature Methods.

[12]  R. Phadke,et al.  Computational methods and evaluation of RNA stabilization reagents for genome-wide expression studies. , 2003, Journal of microbiological methods.

[13]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[14]  Chaoyong James Yang,et al.  High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. , 2008, Analytical chemistry.

[15]  Luke P. Lee,et al.  Dynamic single cell culture array. , 2006, Lab on a chip.

[16]  Dieter Klein,et al.  Quantification using real-time PCR technology : applications and limitations , 2002 .

[17]  T. F. Smith,et al.  Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing , 2006, Clinical Microbiology Reviews.

[18]  A. Folch,et al.  Large-scale single-cell trapping and imaging using microwell arrays. , 2005, Analytical chemistry.

[19]  Stephen R Quake,et al.  Parallel picoliter rt-PCR assays using microfluidics. , 2006, Analytical chemistry.

[20]  Y. Murakami,et al.  Development of a microchamber array for picoliter PCR. , 2001, Analytical chemistry.

[21]  David J. Evans,et al.  Pseudomonas aeruginosa Invasion and Cytotoxicity Are Independent Events, Both of Which Involve Protein Tyrosine Kinase Activity , 1998, Infection and Immunity.

[22]  H. Moriguchi,et al.  An agar-based on-chip neural-cell-cultivation system for stepwise control of network pattern generation during cultivation , 2004 .

[23]  Z. Karim,et al.  Acid pH increases the stability of BSC1/NKCC2 mRNA in the medullary thick ascending limb. , 2003, Journal of the American Society of Nephrology : JASN.

[24]  Elisabetta Delibato,et al.  Evaluation of DNA Extraction Methods for Use in Combination with SYBR Green I Real-Time PCR To Detect Salmonella enterica Serotype Enteritidis in Poultry , 2003, Applied and Environmental Microbiology.

[25]  Numrin Thaitrong,et al.  Integrated microfluidic bioprocessor for single-cell gene expression analysis , 2008, Proceedings of the National Academy of Sciences.

[26]  Andrew D Griffiths,et al.  Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. , 2009, Analytical chemistry.

[27]  Brian J. Mailloux,et al.  Development of a Vital Fluorescent Staining Method for Monitoring Bacterial Transport in Subsurface Environments , 2000, Applied and Environmental Microbiology.

[28]  Peter J. Maimonis,et al.  Affinity and size capture of circulating tumor cells: A platform for increased sensitivity , 2010 .

[29]  Stephen R. Quake,et al.  Microfluidic Digital PCR Enables Multigene Analysis of Individual Environmental Bacteria , 2006, Science.

[30]  S. Quake,et al.  An Integrated Microfabricated Cell Sorter , 2022 .

[31]  Scott A. Rifkin,et al.  Imaging individual mRNA molecules using multiple singly labeled probes , 2008, Nature Methods.

[32]  Alessandra Ghiani,et al.  Resolution of Viable and Membrane-Compromised Bacteria in Freshwater and Marine Waters Based on Analytical Flow Cytometry and Nucleic Acid Double Staining , 2001, Applied and Environmental Microbiology.

[33]  Helene Andersson-Svahn,et al.  A microwell array device with integrated microfluidic components for enhanced single‐cell analysis , 2009, Electrophoresis.

[34]  D. Weitz,et al.  Geometrically mediated breakup of drops in microfluidic devices. , 2003, Physical review letters.

[35]  Real-time quantitative polymerase chain reaction analysis of mitochondrial DNA point mutation. , 2006, Methods in molecular biology.

[36]  S. Lory,et al.  Interaction of Pseudomonas aeruginosa with A549 pneumocyte cells , 1991, Infection and immunity.

[37]  Christopher R. Lowe,et al.  Silicon microchambers for DNA amplification , 1998 .

[38]  K. A. Wolfe,et al.  Microchip-based purification of DNA from biological samples. , 2003, Analytical chemistry.

[39]  R. Zare,et al.  Chemical cytometry on a picoliter-scale integrated microfluidic chip. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  D J Harrison,et al.  mRNA isolation in a microfluidic device for eventual integration of cDNA library construction. , 2000, The Analyst.

[41]  Gwo-Bin Lee,et al.  Membrane-activated microfluidic rotary devices for pumping and mixing , 2007, Biomedical microdevices.

[42]  M. Kew,et al.  Comparison of hepatitis B virus DNA extractions from serum by the QIAamp blood kit, GeneReleaser, and the phenol-chloroform method , 1996, Journal of clinical microbiology.

[43]  M. Goldsworthy Gene expression of Pseudomonas aeruginosa and MRSA within a catheter-associated urinary tract infection biofilm model , 2008 .

[44]  D. Durand,et al.  A novel integrable microvalve for refreshable Braille display system , 2003 .

[45]  S. Klaschik,et al.  Detection and Differentiation of In Vitro-Spiked Bacteria by Real-Time PCR and Melting-Curve Analysis , 2004, Journal of Clinical Microbiology.

[46]  C. Di Serio,et al.  Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. , 2009, American journal of respiratory and critical care medicine.

[47]  C. S. Chen,et al.  Geometric control of cell life and death. , 1997, Science.

[48]  M. A. Northrup,et al.  A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. , 1998, Analytical chemistry.

[49]  Wan-Chi Lee,et al.  An integrated microfluidic system using magnetic beads for virus detection. , 2008, Diagnostic microbiology and infectious disease.

[50]  J. Zahn,et al.  Two phase micromixing and analysis using electrohydrodynamic instabilities , 2006 .

[51]  T. Pistole,et al.  OmpD but not OmpC is involved in adherence of Salmonella enterica serovar typhimurium to human cells. , 2004, Canadian journal of microbiology.

[52]  P. Poole The role of hydration in lysozyme structure and activity: relevance in protein engineering and design , 1994 .

[53]  D. Meldrum,et al.  Real-time PCR of single bacterial cells on an array of adhering droplets. , 2011, Lab on a chip.

[54]  Hiroyuki Kishi,et al.  Single lymphocyte analysis with a microwell array chip , 2007, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[55]  Mehmet Toner,et al.  Controlled encapsulation of single-cells into monodisperse picolitre drops. , 2008, Lab on a chip.

[56]  Ronald R. Breaker,et al.  Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2‘-Hydroxyl Group , 1999 .

[57]  Saeed A. Khan,et al.  A simple and efficient Triton X-100 boiling and chloroform extraction method of RNA isolation from Gram-positive and Gram-negative bacteria. , 2003, FEMS microbiology letters.

[58]  R. C. Davies,et al.  The dependence of lysozyme activity on pH and ionic strength. , 1969, Biochimica et biophysica acta.

[59]  C. Hauck,et al.  Microscopic quantification of bacterial invasion by a novel antibody-independent staining method. , 2004, Journal of microbiological methods.

[60]  S. Bonifacio,et al.  Pseudomonas pneumonia in infants: an autopsy study. , 2003, Human pathology.

[61]  G. Rogers,et al.  Characterization of Bacterial Community Diversity in Cystic Fibrosis Lung Infections by Use of 16S Ribosomal DNA Terminal Restriction Fragment Length Polymorphism Profiling , 2004, Journal of Clinical Microbiology.

[62]  C. Batt,et al.  Nucleic acid purification using microfabricated silicon structures. , 2003, Biosensors & bioelectronics.

[63]  M. Kolak,et al.  Molecular typing of the bacterial flora in sputum of cystic fibrosis patients. , 2003, International journal of medical microbiology : IJMM.

[64]  A. Hauser The type III secretion system of Pseudomonas aeruginosa: infection by injection , 2009, Nature Reviews Microbiology.

[65]  Stephen R Quake,et al.  Microfluidic single-cell mRNA isolation and analysis. , 2006, Analytical chemistry.

[66]  Makoto Ishida,et al.  A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test system on silicon , 2005 .

[67]  G. Bellon,et al.  Localization of Staphylococcus aureus in infected airways of patients with cystic fibrosis and in a cell culture model of S. aureus adherence. , 1998, American journal of respiratory cell and molecular biology.

[68]  L. Burrows,et al.  Genetics of O-Antigen Biosynthesis inPseudomonas aeruginosa , 1999, Microbiology and Molecular Biology Reviews.

[69]  J. Lacroix,et al.  PCR-based technique for the detection of bacteria in semen and urine , 1996 .

[70]  C. Hart,et al.  Increased morbidity associated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients , 2004, Thorax.

[71]  M. Donnenberg,et al.  Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. , 2004, Microbiology.

[72]  Werner Karl Schomburg,et al.  An electrostatically actuated polymer microvalve equipped with a movable membrane electrode , 1997 .

[73]  Bacterial Diversity in Cases of Lung Infection in Cystic Fibrosis Patients: 16S Ribosomal DNA (rDNA) Length Heterogeneity PCR and 16S rDNA Terminal Restriction Fragment Length Polymorphism Profiling , 2003, Journal of Clinical Microbiology.

[74]  P. Chomczyński,et al.  The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on , 2006, Nature Protocols.

[75]  Hai-Qing Gong,et al.  Rapid distribution of a liquid column into a matrix of nanoliter wells for parallel real-time quantitative PCR , 2009 .

[76]  E. Fletcher,et al.  Pseudomonas aeruginosa invades corneal epithelial cells during experimental infection , 1994, Infection and immunity.

[77]  Kwai Peng Chan,et al.  Comparison of three methods for respiratory virus detection between induced sputum and nasopharyngeal aspirate specimens in acute asthma. , 2002, Journal of virological methods.

[78]  Hans Lehrach,et al.  Quantitative PCR based expression analysis on a nanoliter scale using polymer nano-well chips , 2007, Biomedical microdevices.

[79]  V. N. Perera,et al.  Evaluation of eight RNA isolation methods for transcriptional analysis in Campylobacter jejuni. , 2007, Journal of microbiological methods.

[80]  J. Emerson,et al.  Impact of Pseudomonas and Staphylococcus infection on inflammation and clinical status in young children with cystic fibrosis. , 2009, The Journal of pediatrics.

[81]  J. Rossier,et al.  Integrating whole transcriptome assays on a lab-on-a-chip for single cell gene profiling. , 2008, Lab on a chip.

[82]  W. Strober Trypan blue exclusion test of cell viability. , 2001, Current protocols in immunology.

[83]  W. Grajek,et al.  Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cells. , 2010, Polish journal of microbiology.

[84]  Gwo-Bin Lee,et al.  Magnetic-bead-based microfluidic system for ribonucleic acid extraction and reverse transcription processes , 2009, Biomedical microdevices.

[85]  Tomoharu Kajiyama,et al.  Quantitative analysis of gene expression in a single cell by qPCR , 2009, Nature Methods.

[86]  D. Chiu,et al.  Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. , 2005, Analytical chemistry.

[87]  G. Whitesides,et al.  Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow , 1999 .

[88]  M. Magnani,et al.  Detection of Listeria monocytogenes using a commercial PCR kit and different DNA extraction methods , 2007 .

[89]  M. Bowen,et al.  Evaluation of five commercial nucleic acid extraction kits for their ability to inactivate Bacillus anthracis spores and comparison of DNA yields from spores and spiked environmental samples. , 2009, Journal of microbiological methods.

[90]  Jerome P Ferrance,et al.  DNA extraction using a tetramethyl orthosilicate-grafted photopolymerized monolithic solid phase. , 2006, Analytical chemistry.

[91]  Julie A. Wu,et al.  Lysostaphin Disrupts Staphylococcus aureus and Staphylococcus epidermidis Biofilms on Artificial Surfaces , 2003, Antimicrobial Agents and Chemotherapy.

[92]  C. Sze,et al.  Dual fluorescence system for flow cytometric analysis of Escherichia coli transcriptional response in multi-species context. , 2009, Journal of microbiological methods.

[93]  B. P. Kaistha,et al.  Systematic comparison of RNA extraction techniques from frozen and fresh lung tissues: checkpoint towards gene expression studies , 2009, Diagnostic pathology.

[94]  P Belgrader,et al.  A minisonicator to rapidly disrupt bacterial spores for DNA analysis. , 1999, Analytical chemistry.

[95]  Jerome P Ferrance,et al.  Microchip-based macroporous silica sol-gel monolith for efficient isolation of DNA from clinical samples. , 2006, Analytical chemistry.

[96]  M. Lonetto,et al.  Regulated gene expression in Staphylococcus aureus for identifying conditional lethal phenotypes and antibiotic mode of action. , 2000, Gene.

[97]  Beatrice Vitali,et al.  Real-time PCR quantification of bacterial adhesion to Caco-2 cells: competition between bifidobacteria and enteropathogens. , 2005, Research in microbiology.

[98]  Helene Andersson-Svahn,et al.  Overview of single-cell analyses: microdevices and applications. , 2010, Lab on a chip.

[99]  Kevin D Dorfman,et al.  Droplet fusion by alternating current (AC) field electrocoalescence in microchannels , 2005, Electrophoresis.

[100]  W. Tan,et al.  Comparison of different methods of total RNA extraction for viral detection in sputum. , 2001, Journal of virological methods.

[101]  Kensall D. Wise,et al.  A high-flow thermopneumatic microvalve with improved efficiency and integrated state sensing , 2003 .

[102]  Sung-Dong Yang,et al.  Experimental Demonstration and Numerical Simulation of Organic-Aqueous Liquid Extraction Enhanced by Droplet Formation in a Microfluidic Channel , 2006 .

[103]  A. Azghani,et al.  Virulence Factors from Pseudomonas aeruginosa Increase Lung Epithelial Permeability , 2000, Lung.

[104]  M. Preobrazhenskaya,et al.  Structures of Staphylococcus aureus cell-wall complexes with vancomycin, eremomycin, and chloroeremomycin derivatives by 13C{19F} and 15N{19F} rotational-echo double resonance. , 2006, Biochemistry.

[105]  K. A. Wolfe,et al.  Toward a microchip‐based solid‐phase extraction method for isolation of nucleic acids , 2002, Electrophoresis.

[106]  M. Salimans,et al.  Rapid and simple method for purification of nucleic acids , 1990, Journal of clinical microbiology.

[107]  J. Yadav,et al.  Development of a Single-Tube, Cell Lysis-Based, Genus-Specific PCR Method for Rapid Identification of Mycobacteria: Optimization of Cell Lysis, PCR Primers and Conditions, and Restriction Pattern Analysis , 2004, Journal of Clinical Microbiology.

[108]  Gerald B. Pier,et al.  Lung Infections Associated with Cystic Fibrosis , 2002, Clinical Microbiology Reviews.

[109]  K. Manning,et al.  Isolation of nucleic acids from plants by differential solvent precipitation. , 1991, Analytical biochemistry.

[110]  T. Asahara,et al.  Sensitive Quantitative Detection of Commensal Bacteria by rRNA-Targeted Reverse Transcription-PCR , 2006, Applied and Environmental Microbiology.

[111]  Richard Novak,et al.  High-performance single cell genetic analysis using microfluidic emulsion generator arrays. , 2010, Analytical chemistry.

[112]  C. Klapperich,et al.  Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip. , 2009, Lab on a chip.

[113]  G. Felsenfeld,et al.  Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci , 2001, The EMBO journal.

[114]  Samuel Aparicio,et al.  High-throughput microfluidic single-cell RT-qPCR , 2011, Proceedings of the National Academy of Sciences.

[115]  O. Nanassy,et al.  Capture of genomic DNA on glass microscope slides. , 2007, Analytical biochemistry.

[116]  N. Blin,et al.  A general method for isolation of high molecular weight DNA from eukaryotes. , 1976, Nucleic acids research.

[117]  Dong-Chul Han,et al.  PDMS-based micro PCR chip with Parylene coating , 2003 .

[118]  Axel Scherer,et al.  A microfluidic processor for gene expression profiling of single human embryonic stem cells. , 2008, Lab on a chip.

[119]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[120]  M. Surette,et al.  A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients , 2008, Proceedings of the National Academy of Sciences.

[121]  Stephen R Quake,et al.  Solving the "world-to-chip" interface problem with a microfluidic matrix. , 2003, Analytical chemistry.