Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers

Recent developments in engineering and algorithms have made real-world applications in quantum computing possible in the near future. Existing quantum programming languages and compilers use a quantum assembly language composed of 1- and 2-qubit (quantum bit) gates. Quantum compiler frameworks translate this quantum assembly to electric signals (called control pulses) that implement the specified computation on specific physical devices. However, there is a mismatch between the operations defined by the 1- and 2-qubit logical ISA and their underlying physical implementation, so the current practice of directly translating logical instructions into control pulses results in inefficient, high-latency programs. To address this inefficiency, we propose a universal quantum compilation methodology that aggregates multiple logical operations into larger units that manipulate up to 10 qubits at a time. Our methodology then optimizes these aggregates by (1) finding commutative intermediate operations that result in more efficient schedules and (2) creating custom control pulses optimized for the aggregate (instead of individual 1- and 2-qubit operations). Compared to the standard gate-based compilation, the proposed approach realizes a deeper vertical integration of high-level quantum software and low-level, physical quantum hardware. We evaluate our approach on important near-term quantum applications on simulations of superconducting quantum architectures. Our proposed approach provides a mean speedup of $5\times$, with a maximum of $10\times$. Because latency directly affects the feasibility of quantum computation, our results not only improve performance but also have the potential to enable quantum computation sooner than otherwise possible.

[1]  Mathias Soeken,et al.  White Dots do Matter: Rewriting Reversible Logic Circuits , 2013, RC.

[2]  Jongsoo Park,et al.  Gate scheduling for quantum algorithms , 2017, ArXiv.

[3]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[4]  S. Glaser,et al.  Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.

[5]  M. B. Plenio,et al.  Driven geometric phase gates with trapped ions , 2013, 1303.5770.

[6]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[7]  Ling Hu,et al.  Quantum error correction and universal gate set operation on a binomial bosonic logical qubit , 2018, Nature Physics.

[8]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[9]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[10]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[11]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[12]  Sophie Shermer Training Schrödinger’s cat: quantum optimal control , 2015 .

[13]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[14]  W. W. Hansen,et al.  Nuclear Induction , 2011 .

[15]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[16]  Andrew W. Cross,et al.  Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System. , 2016, Physical review letters.

[17]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[18]  Gerhard W. Dueck,et al.  Toffoli network synthesis with templates , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[20]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[21]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[22]  Matthias Troyer,et al.  A software methodology for compiling quantum programs , 2016, ArXiv.

[23]  M. Weides,et al.  Generation of three-qubit entangled states using superconducting phase qubits , 2010, Nature.

[24]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[25]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[26]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[27]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[28]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[29]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[30]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[31]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[32]  J. Chow,et al.  Quantum information processing with superconducting qubits , 2010 .

[33]  David Schuster,et al.  Introducing the Transmon: a new superconducting qubit from optimizing the Cooper Pair Box , 2007 .

[34]  Andrew W. Cross,et al.  Open Quantum Assembly Language , 2017, 1707.03429.

[35]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[36]  Koen Bertels,et al.  An Experimental Microarchitecture for a Superconducting Quantum Processor , 2017, 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[37]  Dmitri Maslov,et al.  Automated optimization of large quantum circuits with continuous parameters , 2017, npj Quantum Information.

[38]  J. Siewert,et al.  Natural two-qubit gate for quantum computation using the XY interaction , 2002, quant-ph/0209035.

[39]  Margaret Martonosi,et al.  Optimized Surface Code Communication in Superconducting Quantum Computers , 2017, 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[40]  T. Schulte-Herbr Quantum CISC Compilation by Optimal Control and Scalable Assembly of Complex Instruction Sets beyond Two-Qubit Gates , 2008 .

[41]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[42]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[43]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[44]  Gerhard W. Dueck,et al.  Quantum Circuit Simplification and Level Compaction , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[45]  D. Schuster,et al.  Speedup for quantum optimal control from automatic differentiation based on graphics processing units , 2016, 1612.04929.

[46]  D. M. Miller,et al.  Lowering the Quantum Gate Cost of Reversible Circuits , 2010, 2010 53rd IEEE International Midwest Symposium on Circuits and Systems.

[47]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[48]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[49]  Seth Lloyd,et al.  Superconducting persistent-current qubit , 1999, cond-mat/9908283.

[50]  Hartmut Neven,et al.  Universal quantum control through deep reinforcement learning , 2019 .

[51]  Margaret Martonosi,et al.  ScaffCC: a framework for compilation and analysis of quantum computing programs , 2014, Conf. Computing Frontiers.

[52]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[53]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.