The Evolution of KDD: towards Domain-Driven Data Mining

Traditionally, data mining is an autonomous data-driven trial-and-error process. Its typical task is to let data tell a story disclosing hidden information, in which domain intelligence may not be necessary in targeting the demonstration of an algorithm. Often knowledge discovered is not generally interesting to business needs. Comparably, real-world applications rely on knowledge for taking effective actions. In retrospect of the evolution of KDD, this paper briefly introduces domain-driven data mining to complement traditional KDD. Domain intelligence is highlighted towards actionable knowledge discovery, which involves aspects such as domain knowledge, people, environment and evaluation. We illustrate it through mining activity patterns in social security data.

[1]  Chengqi Zhang,et al.  Domain-Driven Data Mining: A Practical Methodology , 2006, Int. J. Data Warehous. Min..

[2]  David Taniar,et al.  Parallel Data Mining , 2002 .

[3]  Gregory Piatetsky-Shapiro,et al.  Summary from the KDD-03 panel: data mining: the next 10 years , 2003, SKDD.

[4]  Balaji Padmanabhan,et al.  A Belief-Driven Method for Discovering Unexpected Patterns , 1998, KDD.

[5]  Chengqi Zhang,et al.  Mining Impact-Targeted Activity Patterns in Imbalanced Data , 2008, IEEE Transactions on Knowledge and Data Engineering.

[6]  Edward Omiecinski,et al.  Alternative Interest Measures for Mining Associations in Databases , 2003, IEEE Trans. Knowl. Data Eng..

[7]  Xiaohui Liu,et al.  Data mining from 1994 to 2004: an application-orientated review , 2005, Int. J. Bus. Intell. Data Min..

[8]  Chengqi Zhang,et al.  Ontology-based integration of business intelligence , 2006, Web Intell. Agent Syst..

[9]  William A. Wallace,et al.  Bridging the gap between business objectives and parameters of data mining algorithms , 1997, Decis. Support Syst..

[10]  Boris Kovalerchuk,et al.  Data mining in finance , 2000 .

[11]  Boris Kovalerchuk,et al.  Data mining in finance: advances in relational and hybrid methods , 2000 .

[12]  Li Lin,et al.  Mining in-depth patterns in stock market , 2008, Int. J. Intell. Syst. Technol. Appl..

[13]  Longbing Cao,et al.  Agent-Oriented Metasynthetic Engineering for Decision Making , 2003, Int. J. Inf. Technol. Decis. Mak..

[14]  Jian Pei,et al.  Data Mining: Concepts and Techniques, 3rd edition , 2006 .

[15]  Lawrence J. Henschen,et al.  Using domain knowledge in knowledge discovery , 1999, CIKM '99.

[16]  Hyoil Han,et al.  Temporal rule induction for clinical outcome analysis , 2005, Int. J. Bus. Intell. Data Min..

[17]  Chengqi Zhang,et al.  Domain-Driven Actionable Knowledge Discovery in the Real World , 2006, PAKDD.

[18]  Charu C. Aggarwal,et al.  Towards effective and interpretable data mining by visual interaction , 2002, SKDD.

[19]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[20]  Li Lin,et al.  Agent services-based infrastructure for online assessment of trading strategies , 2004, Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004)..

[21]  Matthias Klusch,et al.  The role of agents in distributed data mining: issues and benefits , 2003, IEEE/WIC International Conference on Intelligent Agent Technology, 2003. IAT 2003..

[22]  Mihael Ankerst,et al.  Report on the SIGKDD-2002 panel the perfect data mining tool: interactive or automated? , 2002, SKDD.

[23]  Pedro M. Domingos Prospects and challenges for multi-relational data mining , 2003, SKDD.

[24]  Longbing Cao,et al.  Human-Computer-Cooperated Intelligent Information System Based on Multi-Agents , 2003 .

[25]  Abraham Silberschatz,et al.  What Makes Patterns Interesting in Knowledge Discovery Systems , 1996, IEEE Trans. Knowl. Data Eng..

[26]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[27]  Ronen Feldman,et al.  The Data Mining and Knowledge Discovery Handbook , 2005 .