Seven, eight and nine-membered anticodon loop mutants of tRNA(2Arg) which cause +1 frameshifting. Tolerance of DHU arm and other secondary mutations.
暂无分享,去创建一个
J. F. Atkins | R. Gesteland | T. Tuohy | R F Gesteland | J F Atkins | T M Tuohy | S Thompson | S. Thompson | J. F. Atkins
[1] J. Roth,et al. A Salmonella frameshift suppressor that acts at runs of A residues in the messenger RNA. , 1978, Journal of molecular biology.
[2] A. Rich,et al. Structural domains of transfer RNA molecules. , 1976, Science.
[3] R. Gaber,et al. Codon recognition during frameshift suppression in Saccharomyces cerevisiae , 1984, Molecular and cellular biology.
[4] A. Hüttenhofer,et al. A novel type of + 1 frameshift suppressor: a base substitution in the anticodon stem of a yeast mitochondrial serine‐tRNA causes frameshift suppression. , 1990, The EMBO journal.
[5] B. Ames,et al. Classification of aminotransferase (C gene) mutants in the histidine operon. , 1966, Journal of molecular biology.
[6] R. Weiss,et al. Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: programmed reading frame shifts and hops. , 1991, Annual review of genetics.
[7] W. Bullock. XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. , 1987 .
[8] J. F. Atkins,et al. External suppression of a frameshift mutant in salmonella. , 1968, Journal of molecular biology.
[9] R. Harvey,et al. Autonomic regulation of a chloride current in heart. , 1989, Science.
[10] N. Fairweather,et al. Versatile low-copy-number plasmid vectors for cloning in Escherichia coli. , 1982, Gene.
[11] H B Nicholas,et al. Differences between transfer RNA molecules. , 1987, Journal of molecular biology.
[12] J. F. Atkins,et al. UGA and non-triplet suppressor reading of the genetic code , 1974, Nature.
[13] L. Bossi,et al. Suppressor sufJ: a novel type of tRNA mutant that induces translational frameshifting. , 1984, Proceedings of the National Academy of Sciences of the United States of America.
[14] J. F. Atkins,et al. Genetic characterization of frameshift suppressors with new decoding properties , 1989, Journal of bacteriology.
[15] M Yarus,et al. Transfer RNA structure and coding specificity. I. Evidence that a D-arm mutation reduces tRNA dissociation from the ribosome. , 1989, Journal of molecular biology.
[16] D. Riddle,et al. Frameshift suppressors: II. Genetic mapping and dominance studies☆☆☆ , 1972 .
[17] J. F. Atkins,et al. tRNA hopping: enhancement by an expanded anticodon. , 1989, The EMBO journal.
[18] J. F. Atkins,et al. Glycine tRNA mutants with normal anticodon loop size cause -1 frameshifting. , 1989, Proceedings of the National Academy of Sciences of the United States of America.
[19] K. Chakraburtty. Effect of sodium bisulfite modification on the arginine acceptance of E. coli tRNA Arg. , 1975, Nucleic acids research.
[20] L. Bossi,et al. Four-base codons ACCA, ACCU and ACCC are recognized by frameshift suppressor sufJ , 1981, Cell.
[21] R. Weiss,et al. Slippery runs, shifty stops, backward steps, and forward hops: -2, -1, +1, +2, +5, and +6 ribosomal frameshifting. , 1987, Cold Spring Harbor symposia on quantitative biology.
[22] B. Ames,et al. Target sequences for mutagenesis in Salmonella histidine-requiring mutants. , 1986, Environmental mutagenesis.
[23] L. H. Schulman,et al. Anticodon switching changes the identity of methionine and valine transfer RNAs. , 1988, Science.
[24] H. Johnston,et al. A refined map of the hisG gene of Salmonella typhimurium. , 1979, Genetics.
[25] M. Yarus,et al. Base substitutions in the tRNA anticodon arm do not degrade the accuracy of reading frame maintenance. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[26] J. F. Atkins,et al. The role of EF-Tu and other translation components in determining translocation step size. , 1990, Biochimica et biophysica acta.
[27] J. F. Atkins,et al. Histidinol Dehydrogenase (hisD) Mutants of Salmonella typhimurium , 1971, Journal of bacteriology.
[28] B. Stocker,et al. Transduction by phage P1kc in Salmonella typhimurium. , 1974, Virology.
[29] E. J. Murgola,et al. Missense and nonsense suppressors can correct frameshift mutations. , 1989, Biochimie.
[30] J. F. Atkins,et al. The nucleotide sequence of the first externally suppressible–1 frameshift mutant, and of some nearby leaky frameshift mutants. , 1983, The EMBO journal.
[31] D. Riddle,et al. Frameshift suppressors. II. Genetic mapping and dominance studies. , 1972, Journal of molecular biology.
[32] E. J. Murgola,et al. Anticodon shift in tRNA: a novel mechanism in missense and nonsense suppression. , 1983, Proceedings of the National Academy of Sciences of the United States of America.
[33] A. Byström,et al. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. , 1989, Science.
[34] R. Weiss,et al. Ribosome gymnastics—Degree of difficulty 9.5, style 10.0 , 1990, Cell.
[35] H. Inokuchi,et al. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. , 1990, Journal of molecular biology.
[36] P. Schimmel,et al. Novel transfer RNAs that are active in Escherichia coli. , 1992, Biochemistry.
[37] H. Ozeki,et al. Structure and organization of the transfer ribonucleic acid genes of Escherichia coli K-12. , 1985, Microbiological reviews.
[38] M. Winey,et al. Mutations in the anticodon stem affect removal of introns from pre-tRNA in Saccharomyces cerevisiae , 1989, Molecular and cellular biology.
[39] W. McClain,et al. Changing the acceptor identity of a transfer RNA by altering nucleotides in a "variable pocket". , 1988, Science.