Diffusion of nitroaromatic vapours into fluorescent dendrimer films for explosives detection

[1]  P. Montméat,et al.  A simple thermodynamic approach to predict responses from polymer-coated quartz crystal microbalance sensors exposed to organic vapors. , 2013, Talanta.

[2]  Philip Doble,et al.  A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed μPADs. , 2013, Lab on a chip.

[3]  Bowei Xu,et al.  Porous films based on a conjugated polymer gelator for fluorescent detection of explosive vapors , 2013 .

[4]  M. Bayindir,et al.  Extremely fast and highly selective detection of nitroaromatic explosive vapours using fluorescent polymer thin films. , 2013, Chemical communications.

[5]  Paul E. Shaw,et al.  The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films. , 2013, Physical chemistry chemical physics : PCCP.

[6]  P. Shaw,et al.  Detection of explosive analytes using a dendrimer-based field-effect transistor , 2013 .

[7]  P. Shaw,et al.  High-Generation Dendrimers with Excimer-like Photoluminescence for the Detection of Explosives , 2013 .

[8]  B. Powell,et al.  Three-dimensional carbazole-based dendrimers: model structures for studying charge transport in organic semiconductor films , 2013 .

[9]  Paul E. Shaw,et al.  Fluorescent carbazole dendrimers for the detection of nitroaliphatic taggants and accelerants , 2012 .

[10]  Investigation of QCM Sensors with Azobenzene Functionalized Coatings for the Detection of Nitroaromatics , 2011 .

[11]  Yunhong Xin,et al.  A portable fluorescence detector for fast ultra trace detection of explosive vapors. , 2011, The Review of scientific instruments.

[12]  Xiangqun Zeng,et al.  Differential solute gas response in ionic-liquid-based QCM arrays: elucidating design factors responsible for discriminative explosive gas sensing. , 2011, Analytical chemistry.

[13]  P. Shaw,et al.  Fluorescent carbazole dendrimers for the detection of explosives , 2011 .

[14]  Paul E. Shaw,et al.  Solid State Dendrimer Sensors: Effect of Dendrimer Dimensionality on Detection and Sequestration of 2,4-Dinitrotoluene , 2011 .

[15]  J. M. Elliott,et al.  Pyrene-modified quartz crystal microbalance for the detection of polynitroaromatic compounds. , 2011, Analytical chemistry.

[16]  Z. Öztürk,et al.  Explosives Detection in Sea Water with Phthalocyanine Quartz Crystal Microbalance Sensors , 2011 .

[17]  F. Klose,et al.  The multipurpose time-of-flight neutron reflectometer “Platypus” at Australia's OPAL reactor , 2011 .

[18]  P. Shaw,et al.  Effect of Dimensionality in Dendrimeric and Polymeric Fluorescent Materials for Detecting Explosives , 2010 .

[19]  Rochus Schmid,et al.  A novel method to measure diffusion coefficients in porous metal-organic frameworks. , 2010, Physical chemistry chemical physics : PCCP.

[20]  M. Tafipolsky,et al.  A Consistent Force Field for the Carboxylate Group. , 2009, Journal of chemical theory and computation.

[21]  Nagy L. Torad,et al.  A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance. , 2009, Journal of hazardous materials.

[22]  Meaghan E Germain,et al.  Optical explosives detection: from color changes to fluorescence turn-on. , 2009, Chemical Society reviews.

[23]  Michael James,et al.  Solid-state dendrimer sensors: probing the diffusion of an explosive analogue using neutron reflectometry. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[24]  Nagy L. Torad,et al.  Alcohol vapours sensor based on thin polyaniline salt film and quartz crystal microbalance. , 2009, Talanta.

[25]  P. Montmeat,et al.  Detection of Explosives Vapors with a Portable Detector Based on Quartz-Crystal Microbalance , 2007, 2007 IEEE Sensors.

[26]  Andrew Nelson,et al.  Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT , 2006 .

[27]  Dahui Zhao,et al.  Sensory Responses in Solution vs Solid State: A Fluorescence Quenching Study of Poly(iptycenebutadiynylene)s , 2005 .

[28]  D. Moore Instrumentation for trace detection of high explosives , 2004 .

[29]  Mark E. Fisher,et al.  Implementation of serial amplifying fluorescent polymer arrays for enhanced chemical vapor sensing of landmines , 2003, SPIE Defense + Commercial Sensing.

[30]  Self-amplifying semiconducting polymers for chemical sensors , 2002 .

[31]  Marcus J. la Grone,et al.  Detection of land mines by amplified fluorescence quenching of polymer films: a man-portable chemical sniffer for detection of ultratrace concentrations of explosives emanating from land mines , 2000, Defense, Security, and Sensing.

[32]  K. Bodenhöfer,et al.  Conferring selectivity to chemical sensors via polymer side-chain selection: thermodynamics of vapor sorption by a set of polysiloxanes on thickness-shear mode resonators , 2000, Analytical chemistry.

[33]  D. A. Edwards,et al.  The effect of a changing diffusion coefficient in super-Case II polymer-penetrant systems , 1995 .

[34]  H. Frisch,et al.  Diffusion of small molecules in polymers , 1983 .

[35]  G. C. Sarti,et al.  INFLUENCE OF RHEOLOGICAL PROPERTIES IN MASS TRANSFER PHENOMENA: SUPER CASE II SORPTION IN GLASSY POLYMERS , 1983 .

[36]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[37]  Noreen L. Thomas,et al.  A theory of case II diffusion , 1982 .

[38]  L. Nicolais,et al.  Relaxation controlled (case II) transport of lower alcohols in poly(methyl methacrylate) , 1976 .

[39]  V. Stannett,et al.  Super Case II Transport of Organic Vapors in Glassy Polymers , 1974 .

[40]  P. Groenveld Laminar withdrawal with appreciable inertial forces , 1970 .

[41]  John Crank,et al.  Diffusion in polymers , 1968 .

[42]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[43]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .

[44]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[45]  G. Park An experimental study of the influence of various factors on the time dependent nature of diffusion in polymers , 1953 .

[46]  J. Crank,et al.  A theoretical investigation of the influence of molecular relaxation and internal stress on diffusion in polymers , 1953 .

[47]  G. Park The determination of the concentration dependent diffusion coefficient for methylene chloride in polystyrene by a steady state method , 1952 .

[48]  J. Crank,et al.  Diffusion in high polymers: some anomalies and their significance , 1951 .