ON UTILITY MAXIMIZATION IN DISCRETE-TIME FINANCIAL MARKET MODELS

We consider a discrete-time financial market model with finite time horizon and give conditions which guarantee the existence of an optimal strategy for the problem of maximizing expected terminal utility. Equivalent martingale measures are constructed using optimal strategies.

[1]  Robert C. Dalang,et al.  Equivalent martingale measures and no-arbitrage in stochastic securities market models , 1990 .

[2]  M. Schäl Portfolio Optimization and Martingale Measures , 2000 .

[3]  B. Bouchard,et al.  Dual formulation of the utility maximization problem: the case of nonsmooth utility , 2004, math/0405290.

[4]  Marco Frittelli,et al.  Introduction to a theory of value coherent with the no-arbitrage principle , 2000, Finance Stochastics.

[5]  Walter Schachermayer,et al.  ON UTILITY‐BASED PRICING OF CONTINGENT CLAIMS IN INCOMPLETE MARKETS , 2005 .

[6]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[7]  Yuri Kabanov,et al.  A teacher's note on no-arbitrage criteria , 2001 .

[8]  Huyen Pham,et al.  No Arbitrage in Discrete Time Under Portfolio Constraints , 2001 .

[9]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[10]  Walter Schachermayer,et al.  A super-martingale property of the optimal portfolio process , 2003, Finance Stochastics.

[11]  Y. Kabanov,et al.  On the optimal portfolio for the exponential utility maximization: remarks to the six‐author paper , 2002 .

[12]  John Hicks,et al.  A Revision of Demand Theory , 1957 .

[13]  Manfred Schäl,et al.  Markov Decision Processes in Finance and Dynamic Options , 2002 .

[14]  W. Schachermayer Optimal investment in incomplete markets when wealth may become negative , 2001 .

[15]  I. V. Evstigneev,et al.  Measurable Selection and Dynamic Programming , 1976, Math. Oper. Res..

[16]  Jean Jacod,et al.  Local martingales and the fundamental asset pricing theorems in the discrete-time case , 1998, Finance Stochastics.

[17]  I. Karatzas,et al.  Optimal Consumption from Investment and Random Endowment in Incomplete Semimartingale Markets , 2001, 0706.0051.

[18]  E. Jouini,et al.  ARBITRAGE IN SECURITIES MARKETS WITH SHORT-SALES CONSTRAINTS , 1995 .

[19]  Walter Schachermayer,et al.  A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time , 1992 .

[20]  I. I. Gikhman,et al.  The Theory of Stochastic Processes III , 1979 .

[21]  Leonard Rogers,et al.  Equivalent martingale measures and no-arbitrage , 1994 .

[22]  Huyên Pham,et al.  The fundamental theorem of asset pricing with cone constraints , 1999 .

[23]  Clotilde Napp,et al.  The Dalang–Morton–Willinger theorem under cone constraints , 2003 .

[24]  W. Schachermayer,et al.  Necessary and sufficient conditions in the problem of optimal investment in incomplete markets , 2003 .

[25]  Manfred Schäl Price systems constructed by optimal dynamic portfolios , 2000, Math. Methods Oper. Res..

[26]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[27]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[28]  Marco Frittelli,et al.  Optimal solutions to utility maximization and to the dual problem , 2000 .

[29]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[30]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .