Character of superposed states under deterministic LOCC

In this paper we investigate the effect of superposition of states on local conversion of pure bipartite states under deterministic LOCC. We are able to form a bridge between comparable and incomparable classes of states through the linear superposition of states. For example, if we consider two pairs of incomparable states, then their superposition may result into a comparable pair of states. We investigate many such cases and provide some of the results in tabular form. We also investigate the entanglement behavior of such classes of states, specifically their monotone nature. Finally we provide some bounds of different measures of entanglement based on the idea of comparability and incomparability under deterministic LOCC.

[1]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[2]  Dirk Bouwmeester,et al.  The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation , 2010, Physics and astronomy online library.

[3]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[4]  Concurrence of superpositions , 2006, quant-ph/0610219.

[5]  He-Shan Song,et al.  Bounds on bipartitely shared entanglement reduced from superposed tripartite quantum states , 2008, 0807.2681.

[6]  Aidan Roy,et al.  Entanglement of subspaces in terms of entanglement of superpositions , 2007, 0711.1344.

[7]  D. Bruß,et al.  Optimal universal and state-dependent quantum cloning , 1997, quant-ph/9705038.

[8]  Impossibility of exact flipping of three arbitrary quantum states via incomparability , 2005, quant-ph/0511040.

[9]  W. Zurek Quantum cloning: Schrödinger's sheep , 2000, Nature.

[10]  J. Smolin,et al.  Entanglement of superpositions. , 2005, Physical review letters.

[11]  G. Gour Reexamination of entanglement of superpositions , 2007, 0707.1521.

[12]  Aditi Sen,et al.  Common Origin of No-Cloning and No-Deleting Principles Conservation of Information , 2004 .

[13]  Horace P. Yuen,et al.  Amplification of quantum states and noiseless photon amplifiers , 1986 .

[14]  No-flipping as a consequence of no-signalling and non-increase of entanglement under LOCC , 2005, quant-ph/0506154.

[15]  Zeng-Bing Chen,et al.  Bounds on the multipartite entanglement of superpositions , 2007, 0706.1598.

[16]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[17]  Debasis Sarkar,et al.  General classes of impossible operations through the existence of incomparable states , 2007, Quantum Inf. Comput..

[18]  N. Cerf,et al.  Tight bounds on the concurrence of quantum superpositions , 2007, 0705.4650.

[19]  D. Dieks Communication by EPR devices , 1982 .

[20]  Somshubhro Bandyopadhyay,et al.  Classification of nonasymptotic bipartite pure-state entanglement transformations , 2002 .

[21]  Physical Review , 1965, Nature.

[22]  Debasis Sarkar,et al.  Deterministic local conversion of incomparable states by collective LOCC , 2005, Quantum Inf. Comput..

[24]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[25]  A. Acín,et al.  Multipartite entanglement of superpositions , 2007, 0705.2521.

[26]  N. Gisin,et al.  Spin Flips and Quantum Information for Antiparallel Spins , 1999 .

[27]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[28]  H. Fan,et al.  Bounds on negativity of superpositions , 2007, 0704.0757.

[29]  S. J. van Enk Relations between cloning and the universal NOT derived from conservation laws. , 2005 .