Equivalence between classes of multipliers for slope-restricted nonlinearities

Different classes of multipliers have been proposed in the literature for obtaining stability criteria using passivity theory, integral quadratic constraint (IQC) theory or Lyapunov theory. Some of these classes of multipliers can be applied with slope-restricted nonlinearities. In this paper the concept of phase-containment is defined and it is shown that several classes are phase-contained within the class of Zames-Falb multipliers. There are two main consequences: firstly it follows that the class of Zames-Falb multipliers remains, to date, the widest class of available multipliers for slope-restricted nonlinearities; secondly further restrictions may be avoided when applying some of the other classes of multipliers.

[1]  Matthew C. Turner,et al.  ℒ2 gain bounds for systems with slope-restricted nonlinearities , 2010, Proceedings of the 2010 American Control Conference.

[2]  M. Gruber Path integrals and Lyapunov functionals , 1969 .

[3]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[4]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[5]  Michael G. Safonov,et al.  All multipliers for repeated monotone nonlinearities , 2002, IEEE Trans. Autom. Control..

[6]  Dmitry A. Altshuller Delay-Integral-Quadratic Constraints and Stability Multipliers for Systems With MIMO Nonlinearities , 2011, IEEE Transactions on Automatic Control.

[7]  A. Wills,et al.  Zames-Falb multipliers for quadratic programming , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[8]  Michael G. Safonov,et al.  Incremental positivity nonpreservation by stability multipliers , 2002, IEEE Trans. Autom. Control..

[9]  M. G. Safonov,et al.  Incremental positivity non-preservation by stability multipliers , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[10]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[11]  PooGyeon Park,et al.  Stability criteria of sector- and slope-restricted Lur'e systems , 2002, IEEE Trans. Autom. Control..

[12]  Manfred Morari,et al.  Multivariable Anti-windup Controller Synthesis Using Bilinear Matrix Inequalities , 2000, Eur. J. Control.

[13]  J. Wen,et al.  Robustness analysis of LTI systems with structured incrementally sector bounded nonlinearities , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[14]  T. Başar Absolute Stability of Nonlinear Systems of Automatic Control , 2001 .

[15]  K. Narendra,et al.  An off-axis circle criterion for stability of feedback systems with a monotonic nonlinearity , 1968 .

[16]  Matthew C. Turner,et al.  A robust anti-windup design procedure for SISO systems , 2011, Int. J. Control.

[17]  U. Jönsson Stability analysis with Popov multipliers and integral quadratic constraints , 1997 .

[18]  Aud J. L. IIrILLEMS Frequency Domain Stability Criteria-Part I , 1965 .

[19]  G. Zames On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .

[20]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[21]  E. Jury,et al.  A stability inequality for a class of nonlinear feedback systems , 1966 .

[22]  N. Barabanov,et al.  On the Kalman problem , 1988 .

[23]  Guang Li,et al.  Comments on "On the Existence of Stable, Causal Multipliers for Systems With Slope-Restricted Nonlinearities" , 2012, IEEE Trans. Autom. Control..

[24]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[25]  George Zames,et al.  Multipliers with real poles and zeros: An application of a theorem on stability conditions , 1968 .

[26]  Matthew C. Turner,et al.  On the Existence of Stable, Causal Multipliers for Systems With Slope-Restricted Nonlinearities , 2009, IEEE Transactions on Automatic Control.

[27]  Michael G. Safonov,et al.  Computation of Zames-Falb Multipliers Revisited , 2010, IEEE Transactions on Automatic Control.

[28]  Manfred Morari,et al.  Multiplier theory for stability analysis of anti-windup control systems , 1999, Autom..

[29]  Alexandre Megretski,et al.  New results for analysis of systems with repeated nonlinearities , 2001, Autom..

[30]  Carsten W. Scherer,et al.  IQC‐synthesis with general dynamic multipliers , 2014 .

[31]  Manuel Berenguel,et al.  A QFT Framework for Antiwindup Control Systems Design , 2010 .

[32]  Michael G. Safonov,et al.  Computer-aided stability analysis renders Papov criterion obsolete , 1987 .

[33]  Alexander Lanzon,et al.  Factorization of multipliers in passivity and IQC analysis , 2011, CDC-ECE.

[34]  Jose C. Geromel,et al.  A convex approach to the absolute stability problem , 1994, IEEE Trans. Autom. Control..

[35]  J. Willems,et al.  Frequency domain stability criteria--Part II , 1965 .

[36]  Manfred Morari,et al.  Multivariable anti-windup controller synthesis using linear matrix inequalities , 2001, Autom..

[37]  J. Willems Path integrals and stability , 1998 .