Acoustofluidic Holography for Micro- to Nanoscale Particle Manipulation.

Acoustic-based techniques can manipulate particles in a label-free, contact-free, and biocompatible manner. However, most previous work in acoustic manipulation has been constrained by axisymmetric patterns of pressure nodes and antinodes. Acoustic holography is an emerging technique that offers the potential to generate arbitrary pressure distributions which can be applied to particle manipulation with higher degrees of freedom. However, since current acoustic holography techniques rely on acoustic radiation forces, which decrease dramatically when the target particle size decreases, they have difficulty manipulating particles in the micro/nanoscale. Here, we introduce a holography technique that leverages both an arbitrary acoustic field and controllable fluid motion to offer an effective approach for manipulating micro/nano particles. Our approach, termed acoustofluidic holography (AFH), can manipulate a variety of materials, including cells, polymers, and metals, across sizes ranging from hundreds of micrometers to tens of nanometers.

[1]  J. Socolar,et al.  Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals , 2020, Nature Communications.

[2]  Derek K. Tseng,et al.  Holographic detection of nanoparticles using acoustically actuated nanolenses , 2020, Nature Communications.

[3]  Y. Chou,et al.  Deep, sub-wavelength acoustic patterning of complex and non-periodic shapes on soft membranes supported by air cavities. , 2019, Lab on a chip.

[4]  Michael D. Brown Phase and amplitude modulation with acoustic holograms , 2019, Applied Physics Letters.

[5]  Joseph Rufo,et al.  Acoustofluidic separation of cells and particles , 2019, Microsystems & nanoengineering.

[6]  Po-Hsun Huang,et al.  Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells , 2019, Science Advances.

[7]  Peng Li,et al.  Applications of Acoustofluidics in Bioanalytical Chemistry. , 2018, Analytical chemistry.

[8]  Bruce W. Drinkwater,et al.  Holographic acoustic tweezers , 2018, Proceedings of the National Academy of Sciences.

[9]  Seung‐Woo Cho,et al.  High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy , 2018, Nature Communications.

[10]  Peng Li,et al.  Acoustic tweezers for the life sciences , 2018, Nature Methods.

[11]  James P K Armstrong,et al.  Engineering Anisotropic Muscle Tissue using Acoustic Cell Patterning , 2018, Advanced materials.

[12]  Po-Hsun Huang,et al.  Digital acoustofluidics enables contactless and programmable liquid handling , 2018, Nature Communications.

[13]  P. Fischer,et al.  Acoustic Fabrication via the Assembly and Fusion of Particles , 2018, Advanced materials.

[14]  Subra Suresh,et al.  Isolation of exosomes from whole blood by integrating acoustics and microfluidics , 2017, Proceedings of the National Academy of Sciences.

[15]  B. Cox,et al.  Design of multi-frequency acoustic kinoforms , 2017, 2017 IEEE International Ultrasonics Symposium (IUS).

[16]  Karen Abrinia,et al.  Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels , 2017, Biofabrication.

[17]  Liang Yang,et al.  Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material , 2016, Light: Science & Applications.

[18]  Peer Fischer,et al.  Holograms for acoustics , 2016, Nature.

[19]  Jiri Jaros,et al.  Control of broadband optically generated ultrasound pulses using binary amplitude holograms. , 2016, The Journal of the Acoustical Society of America.

[20]  A. Alú,et al.  Controlling sound with acoustic metamaterials , 2016 .

[21]  Subra Suresh,et al.  Three-dimensional manipulation of single cells using surface acoustic waves , 2016, Proceedings of the National Academy of Sciences.

[22]  Régis Marchiano,et al.  Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers. , 2014, Physical review letters.

[23]  Holography Book,et al.  Fourier Acoustics Sound Radiation And Nearfield Acoustical Holography , 2016 .

[24]  Miyuki Maezawa,et al.  Applications of Acoustic Streaming to Microfluidic Devices , 2016 .

[25]  David J. Collins,et al.  Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves , 2015, Nature Communications.

[26]  Sriram Subramanian,et al.  Holographic acoustic elements for manipulation of levitated objects , 2015, Nature Communications.

[27]  Hyung Jin Sung,et al.  Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. , 2015, Lab on a chip.

[28]  Thibault Leportier,et al.  Converting optical scanning holograms of real objects to binary Fourier holograms using an iterative direct binary search algorithm. , 2015, Optics express.

[29]  Martyn Hill,et al.  Chapter 7:Modelling and Applications of Planar Resonant Devices for Acoustic Particle Manipulation , 2014 .

[30]  Bradley E. Treeby,et al.  Control of optically generated ultrasound fields using binary amplitude holograms , 2014, 2014 IEEE International Ultrasonics Symposium.

[31]  William Thielicke,et al.  PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB , 2014 .

[32]  D. Weitz,et al.  Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. , 2014, Lab on a chip.

[33]  J. Reboud,et al.  Rare-Cell Enrichment by a Rapid, Label-Free, Ultrasonic Isopycnic Technique for Medical Diagnostics** , 2014, Angewandte Chemie.

[34]  Adrian Neild,et al.  Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel , 2014 .

[35]  Francesco Costanzo,et al.  Investigation of acoustic streaming patterns around oscillating sharp edges. , 2014, Lab on a chip.

[36]  Ye Ai,et al.  Separation of Escherichia coli Bacteria from Peripheral Blood Mononuclear Cells Using Standing Surface Acoustic Waves , 2013, Analytical chemistry.

[37]  S. Kou,et al.  Rayleigh-Sommerfeld diffraction formula in k space. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  Adrian Neild,et al.  Selective particle and cell clustering at air–liquid interfaces within ultrasonic microfluidic systems , 2013 .

[39]  Daniel Ahmed,et al.  Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. , 2013, Lab on a chip.

[40]  E. Brasselet,et al.  Universal morphologies of fluid interfaces deformed by the radiation pressure of acoustic or electromagnetic waves. , 2012, Physical review letters.

[41]  A. Neild,et al.  Selective particle and cell clustering at air–liquid interfaces within ultrasonic microfluidic systems , 2012, Microfluidics and Nanofluidics.

[42]  Julien Reboud,et al.  Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies , 2012, Proceedings of the National Academy of Sciences.

[43]  Martin Wiklund,et al.  Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. , 2012, Lab on a chip.

[44]  Martyn Hill,et al.  Acoustofluidics 9: Modelling and applications of planar resonant devices for acoustic particle manipulation. , 2012, Lab on a chip.

[45]  Thomas Laurell,et al.  Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. , 2012, Lab on a chip.

[46]  Henrik Bruus,et al.  Acoustofluidics 7: The acoustic radiation force on small particles. , 2012, Lab on a chip.

[47]  D. Bouwmeester,et al.  Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons , 2011, 1205.1346.

[48]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[49]  J. Lipfert,et al.  Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids , 2011, Nature communications.

[50]  J. Friend,et al.  Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics , 2011 .

[51]  Julien Reboud,et al.  Tuneable surface acoustic waves for fluid and particle manipulations on disposable chips. , 2010, Lab on a chip.

[52]  Changyang Lee,et al.  Transverse acoustic trapping using a gaussian focused ultrasound. , 2010, Ultrasound in medicine & biology.

[53]  Tomoyoshi Shimobaba,et al.  Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields. , 2009, Optics express.

[54]  L. Oddershede,et al.  Optical Tweezers Cause Physiological Damage to Escherichia coli and Listeria Bacteria , 2008, Applied and Environmental Microbiology.

[55]  R. McGough,et al.  Evaluation of the angular spectrum approach for simulations of near-field pressures. , 2008, The Journal of the Acoustical Society of America.

[56]  Deirdre R. Meldrum,et al.  Faculty Opinions recommendation of Massively parallel manipulation of single cells and microparticles using optical images. , 2005 .

[57]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[58]  C. Dobson Protein folding and misfolding , 2003, Nature.

[59]  D. Grier A revolution in optical manipulation , 2003, Nature.

[60]  G. Nordin,et al.  Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design. , 2001, Optics express.

[61]  Jeffrey A. Davis,et al.  Encoding amplitude information onto phase-only filters. , 1999, Applied optics.

[62]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers , 1999 .

[63]  N. Riley Acoustic Streaming , 1998 .

[64]  K. Svoboda,et al.  Fluctuation analysis of motor protein movement and single enzyme kinetics. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Wu,et al.  Acoustical tweezers. , 1991, The Journal of the Acoustical Society of America.

[66]  Julian D. Maynard,et al.  Nearfield acoustic holography (NAH) II. Holographic reconstruction algorithms and computer implementation , 1987 .

[67]  J. Reid,et al.  Multifrequency Holography Using Backpropagation , 1986 .

[68]  A. Sawchuk,et al.  Computer-generated double-phase holograms. , 1978, Applied optics.

[69]  L. Gor’kov,et al.  On the forces acting on a small particle in an acoustical field in an ideal fluid , 1962 .