Approximating minimal unsatisfiable subformulae by means of adaptive core search

The paper is concerned with the relevant practical problem of selecting a small unsatisfiable subset of clauses inside an unsatisfiable CNF formula. Moreover, it deals with the algorithmic problem of improving an enumerative (DPLL-style) approach to SAT, in order to overcome some structural defects of such an approach. Within a complete solution framework, we are able to evaluate the difficulty of each clause by analyzing the history of the search. Such clause hardness evaluation is used in order to rapidly select an unsatisfiable subformula (of the given CNF) which is a good approximation of a minimal unsatisfiable subformula (MUS). Unsatisfiability is proved by solving only such subformula. Very small unsatisfiable subformulae are detected inside famous Dimacs unsatisfiable problems and in real-world problems. Comparison with the very efficient solver SATO 3.2 used as a state-of-the-art DPLL procedure (disabling learning of new clauses) shows the effectiveness of such enumeration guide.

[1]  Jan Friso Groote,et al.  The Propositional Formula Checker HeerHugo , 2000, Journal of Automated Reasoning.

[2]  Jacques Carlier,et al.  SAT versus UNSAT , 1993, Cliques, Coloring, and Satisfiability.

[3]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.

[4]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[5]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[6]  Daniele Pretolani,et al.  Efficiency and stability of hypergraph SAT algorithms , 1993, Cliques, Coloring, and Satisfiability.

[7]  Stefan Szeider,et al.  Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference , 2002, Theor. Comput. Sci..

[8]  V. Vinay,et al.  Branching rules for satisfiability , 1995, Journal of Automated Reasoning.

[9]  David S. Johnson,et al.  Cliques, Coloring, and Satisfiability , 1996 .

[10]  Antonio Sassano,et al.  Errors Detection and Correction in Large Scale Data Collecting , 2001, IDA.

[11]  Etienne de Klerk,et al.  Centrum voor Wiskunde en Informatica REPORTRAPPORT Report SEN-R9903 , 1999 .

[12]  James M. Crawford,et al.  Experimental Results on the Crossover Point inSatis ability , 1993 .

[13]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[14]  Jinchang Wang,et al.  Solving propositional satisfiability problems , 1990, Annals of Mathematics and Artificial Intelligence.

[15]  Ralf D. Brown Augmentation , 2004, Machine Translation.

[16]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[17]  J. P. Marques,et al.  GRASP : A Search Algorithm for Propositional Satisfiability , 1999 .

[18]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Exceptionally Hard SAT Instances , 1996, CP.

[19]  Gerald J. Sussman,et al.  Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis , 1976, Artif. Intell..

[20]  D. Du,et al.  Advances in optimization and approximation , 1994 .

[21]  Jun Gu,et al.  Algorithms for the satisfiability (SAT) problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[22]  David A. McAllester,et al.  A Rearrangement Search Strategy for Determining Propositional Satisfiability , 1988, AAAI.

[23]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[24]  Oliver Kullmann,et al.  An application of matroid theory to the SAT problem , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[25]  Mark E. Stickel,et al.  Implementing the Davis–Putnam Method , 2000, Journal of Automated Reasoning.

[26]  Cristian S. Calude,et al.  Discrete Mathematics and Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[27]  John W. Chinneck,et al.  Locating Minimal Infeasible Constraint Sets in Linear Programs , 1991, INFORMS J. Comput..

[28]  Roberto Battiti,et al.  Approximate Algorithms and Heuristics for MAX-SAT , 1998 .

[29]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[30]  V. Chandru,et al.  Optimization Methods for Logical Inference , 1999 .

[31]  Klaus Truemper,et al.  Effective logic computation , 1998 .

[32]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[33]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[34]  G. Stålmarck,et al.  Modeling and Verifying Systems and Software in Propositional Logic , 1990 .

[35]  Jun Gu,et al.  Optimization Algorithms for the Satisfiability (SAT) Problem , 1994 .

[36]  Leslie E. Trotter,et al.  Some Structural and Algorithmic Properties of the Maximum Feasible Subsystem Problem , 1999, IPCO.

[37]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[38]  Allen Van Gelder,et al.  Satisfiability testing with more reasoning and less guessing , 1995, Cliques, Coloring, and Satisfiability.