Multi-terminal quantum transport through a single benzene molecule: Evidence of a molecular transistor

Abstract We explore multi-terminal quantum transport through a single benzene molecule attached to metallic electrodes. A simple tight-binding model is used to describe the system and all the calculations are done based on the Green function formalism. With a brief description of two-terminal quantum transport, we present a detailed study of three-terminal transport properties through the benzene molecule to reveal the actual mechanism of electron transport. Here we address numerical results which describe multi-terminal conductances, reflection probabilities and current–voltage characteristics. Most significantly we observe that, the molecular system where the benzene molecule is attached to three terminals can be operated as a transistor, and we call it a molecular transistor. This aspect can be utilized in designing nano-electronic circuits and our investigation may provide a basic framework to study electron transport in any complicated multi-terminal quantum system.

[1]  S. Roth,et al.  MICROSTRUCTURED GOLD/LANGMUIR-BLODGETT FILM/GOLD TUNNELING JUNCTIONS , 1995 .

[2]  Supriyo Datta,et al.  Unified description of molecular conduction: From molecules to metallic wires , 2001 .

[3]  Vladimiro Mujica,et al.  The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description , 1999 .

[4]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[5]  S. Maiti A mesoscopic ring as a XNOR gate: An exact result , 2009, 0911.1660.

[6]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .

[7]  A. Aviram,et al.  Conference on Molecular Electronics: Science and Technology, Puerto Rico, 14-18 December 1997: Preface , 1998 .

[8]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[9]  Amir Yacoby,et al.  Measurement of the conductance of single conjugated molecules , 2005, Nature.

[10]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[11]  Mark A. Ratner,et al.  Molecular electronics , 2005 .

[12]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[13]  K. Walczak The role of quantum interference in determining transport properties of molecular bridges , 2004 .

[14]  S. Datta,et al.  Charge transfer and “band lineup” in molecular electronic devices: A chemical and numerical interpretation , 2001 .

[15]  Lang,et al.  First-principles calculation of transport properties of a molecular device , 2000, Physical review letters.

[16]  S. Maiti Electron transport in a double quantum ring: Evidence of an AND gate , 2009, 0911.1640.

[17]  D. Neuhauser Anti-coherence based molecular electronics: XOR-gate response , 2002 .

[18]  Tian,et al.  Electronic conduction through organic molecules. , 1996, Physical review. B, Condensed matter.

[19]  The quantum interference effect transistor. , 2005, Nanotechnology.

[20]  Baigeng Wang,et al.  Electron transport through a mesoscopic hybrid multiterminal resonant-tunneling system , 2000 .

[21]  Hongqi Xu,et al.  Electrical properties of three-terminal ballistic junctions , 2001 .

[22]  M. Ratner,et al.  Electron conduction in molecular wires. I. A scattering formalism , 1994 .

[23]  Current fluctuations of polymeric chains , 2003, cond-mat/0308426.

[24]  M. Tsukada,et al.  Interface sensitivity in quantum transport through single molecules , 2004 .

[25]  Hongqi Xu Method of calculations for electron transport in multiterminal quantum systems based on real-space lattice models , 2002 .

[26]  M. Wasielewski,et al.  Electron transfer in multiply bridged donor-acceptor molecules: Dephasing and quantum coherence. , 2006, The journal of physical chemistry. B.

[27]  Andrew G. Glen,et al.  APPL , 2001 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  D. Neuhauser,et al.  Quantum interference in polycyclic hydrocarbon molecular wires , 2004 .

[30]  J. Cao,et al.  Shot noise properties of electron transport through an interacting multi-terminal quantum dots system , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  F. Peeters,et al.  Magnetoconductance through a chain of rings with or without periodically modulated spin-orbit interaction strength and magnetic field , 2005 .

[32]  Büttiker,et al.  Four-terminal phase-coherent conductance. , 1986, Physical review letters.

[33]  Christian Joachim,et al.  Conductance of molecular wires connected or bonded in parallel , 1999 .

[34]  F. Peeters,et al.  Magnetoconductance of rectangular arrays of quantum rings , 2008, 0806.2734.

[35]  R. Baer,et al.  Phase coherent electronics: a molecular switch based on quantum interference. , 2002, Journal of the American Chemical Society.

[36]  Thomas Frauenheim,et al.  Atomistic simulations of complex materials: ground-state and excited-state properties , 2002 .

[37]  M. Ratner,et al.  Current‐voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification , 1996 .

[38]  Jorge M. Seminario,et al.  Electron Transport through Single Molecules: Scattering Treatment Using Density Functional and Green Function Theories , 2001 .

[39]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.