Model Reduction, Structure-property Relations and Optimization Techniques for the Production of Nanoscale Particles

The production of nanoscaled particulate products with exactly pre-defined characteristics is of enormous economic relevance. Although there are different particle formation routes they may all be described by one class of equations. Therefore, simulating such processes comprises the solution of nonlinear, hyperbolic integro-partial differential equations. In our project we aim to study this class of equations in order to develop efficient tools for the identification of optimal process conditions to achieve desired product properties. This objective is approached by a joint effort of the mathematics and the engineering faculty. Two model-processes are chosen for this study, namely a precipitation process and an innovative aerosol process allowing for a precise control of residence time and temperature. Since the overall problem is far too complex to be solved directly a hierarchical sequence of simplified problems has been derived which are solved consecutively. In particular, the simulation results are finally subject to comparison with experiments.

[1]  Yvon Maday,et al.  Monotonic time-discretized schemes in quantum control , 2006, Numerische Mathematik.

[2]  W. Peukert,et al.  Modelling titania formation at typical industrial process conditions: effect of surface shielding and surface energy on relevant growth mechanisms , 2006 .

[3]  W. Peukert,et al.  Real-Time Monitoring of the Nucleation and Growth of ZnO Nanoparticles Using an Optical Hyper-Rayleigh Scattering Method , 2009 .

[4]  J. Israelachvili Intermolecular and surface forces , 1985 .

[5]  Y. Qiu,et al.  ZnO Nanotetrapods: Controlled Vapor‐Phase Synthesis and Application for Humidity Sensing , 2007 .

[6]  Julien Salomon,et al.  Contrôle en chimie quantique : conception et analyse de schémas d'optimisation , 2005 .

[7]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[8]  S. Mischler,et al.  On a Kinetic Equation for Coalescing Particles , 2004 .

[9]  Kai Sundmacher,et al.  H-matrix methods for quadratic integral operators appearing in population balances , 2008, Comput. Chem. Eng..

[10]  R. Murray,et al.  Flat systems, equivalence and trajectory generation , 2003 .

[11]  Sotiris E. Pratsinis,et al.  Process simulation of gas-to-particle-synthesis via population balances: Investigation of three models , 2002 .

[12]  Alfons Mersmann,et al.  Möglichkeiten einer vorhersagenden Abschätzung der Kristallisationskinetik , 2000 .

[13]  Wolfgang Peukert,et al.  Combined experimental/numerical study on the precipitation of nanoparticles , 2004 .

[14]  Ulrich Nieken,et al.  Modeling and simulation of crystallization processes using parsival , 2001 .

[15]  S. Mischler,et al.  The Continuous Coagulation-Fragmentation¶Equations with Diffusion , 2002 .

[16]  M. Hounslow,et al.  A discretized population balance for nucleation, growth, and aggregation , 1988 .

[17]  Panagiotis D. Christofides,et al.  Nonlinear control of spatially inhomogenous aerosol processes , 1999 .

[18]  J. Roquejoffre,et al.  A KINETIC MODEL FOR DROPLET COALESCENCE IN DENSE SPRAYS , 2001 .

[19]  Gabriel Wittum,et al.  FAST NUMERICAL INTEGRATION FOR SIMULATION OF STRUCTURED POPULATION EQUATIONS , 2006 .

[20]  Wolfgang Hackbusch,et al.  Approximation of coalescence integrals in population balance models with local mass conservation , 2007, Numerische Mathematik.

[21]  J. Seinfeld,et al.  Inverse Modeling of Aerosol Dynamics Using Adjoints: Theoretical and Numerical Considerations , 2005 .

[22]  Panagiotis D. Christofides,et al.  Simulation, estimation and control of size distribution in aerosol processes with simultaneous reaction, nucleation, condensation and coagulation , 2002 .

[23]  Wolfgang Peukert,et al.  TAILORING PARTICLE SIZE THROUGH NANOPARTICLE PRECIPITATION , 2004 .

[24]  Sotiris E. Pratsinis,et al.  Computational fluid-particle dynamics for the flame synthesis of alumina particles , 2000 .

[25]  Jörg Raisch,et al.  Control of batch cooling crystallization processes based on orbital flatness , 2003 .

[26]  Wolfgang Hackbusch Fast and exact projected convolution for non-equidistant grids , 2007, Computing.

[27]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[28]  Wolfgang Hackbusch,et al.  On the Efficient Evaluation of Coalescence Integrals in Population Balance Models , 2006, Computing.

[29]  G. Leugering,et al.  Interfacial energy estimation in a precipitation reaction using the flatness based control of the moment trajectories , 2010 .

[30]  W. Peukert,et al.  Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. , 2009, ACS nano.

[31]  W. Peukert,et al.  Simultaneous 3D observation of different kinetic subprocesses for precipitation in a T-mixer , 2009 .

[32]  Jitendra Kumar,et al.  Convergence analysis of sectional methods for solving breakage population balance equations-II: the cell average technique , 2008, Numerische Mathematik.

[33]  Michael Manhart,et al.  Predictive simulation of nanoparticle precipitation based on the population balance equation , 2006 .

[34]  Kai Sundmacher,et al.  H-matrix methods for linear and quasi-linear integral operators appearing in population balances , 2007, Comput. Chem. Eng..

[35]  B. Satpati,et al.  Understanding the quantum size effects in ZnO nanocrystals , 2004 .

[36]  Adrian Sandu,et al.  Inverse modeling of aerosol dynamics: Condensational growth , 2004 .

[37]  Michael Manhart,et al.  Precipitation of nanoparticles in a T-mixer: Coupling the particle population dynamics with hydrodynamics through direct numerical simulation , 2006 .

[38]  Gabriel Wittum,et al.  Simulation of crystal growth and attrition in a stirred tank , 2006 .

[39]  M. Fliess,et al.  Sur les systèmes non linéaires différentiellement plats , 1992 .