Robust a posteriori error control for transmission problems with sign-changing coefficients using localization of dual norms
暂无分享,去创建一个
[1] Martin Vohralík,et al. Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..
[2] Eric T. Chung,et al. A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials , 2013, J. Comput. Appl. Math..
[3] Dietrich Braess,et al. Equilibrated residual error estimator for edge elements , 2007, Math. Comput..
[4] Serge Nicaise,et al. A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients , 2010, J. Comput. Appl. Math..
[5] Rüdiger Verfürth,et al. Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..
[6] Rüdiger Verfürth,et al. Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.
[7] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[8] K. Ramdani,et al. Analyse spectrale et singularits d'un problme de transmission non coercif , 1999 .
[9] Lucas Chesnel,et al. T-COERCIVITY FOR SCALAR INTERFACE PROBLEMS BETWEEN DIELECTRICS AND METAMATERIALS , 2011 .
[10] Lucas Chesnel,et al. T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients , 2013, Numerische Mathematik.
[11] Barbara I. Wohlmuth,et al. A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..
[12] Carsten Carstensen,et al. Estimator competition for Poisson problems , 2010 .
[13] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[14] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .
[15] Martin Vohralík,et al. A unified framework for a posteriori error estimation for the Stokes problem , 2012, Numerische Mathematik.
[16] J. Z. Zhu,et al. The finite element method , 1977 .
[17] D. Kelly,et al. The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .
[18] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[19] W. Prager,et al. Approximations in elasticity based on the concept of function space , 1947 .
[20] Barbara I. Wohlmuth,et al. On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..
[21] Carsten Carstensen,et al. Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..
[22] Martin Vohralík. Guaranteed and Fully Robust a posteriori Error Estimates for Conforming Discretizations of Diffusion Problems with Discontinuous Coefficients , 2011, J. Sci. Comput..
[23] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[24] Philippe Destuynder,et al. Explicit error bounds in a conforming finite element method , 1999, Math. Comput..
[25] Manil Suri,et al. A posteriori estimation of the linearization error for strongly monotone nonlinear operators , 2007 .
[26] A. Sihvola,et al. Surface modes of negative-parameter interfaces and the importance of rounding sharp corners , 2008 .
[27] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.