Robust a posteriori error control for transmission problems with sign-changing coefficients using localization of dual norms

We present a posteriori error analysis of diffusion problems where the diffusion tensor is not necessarily symmetric and positive definite and can in particular change its sign. We first identify the correct intrinsic error norm for such problems, including both conforming and nonconforming approximations. This involves global dual (residual) norms. Importantly, we show their equivalence with the Hilbertian sums of their localizations. We then design estimators which deliver simultaneously guaranteed error upper bound, local and global error lower bounds, and robustness with respect to the diffusion tensor as well as with respect to the approximation polynomial degree. The estimators are given in a unified setting covering at once conforming, nonconforming, mixed, and discontinuous Galerkin finite element discretizations. Numerical results illustrate the theoretical developments.

[1]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[2]  Eric T. Chung,et al.  A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials , 2013, J. Comput. Appl. Math..

[3]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[4]  Serge Nicaise,et al.  A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients , 2010, J. Comput. Appl. Math..

[5]  Rüdiger Verfürth,et al.  Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..

[6]  Rüdiger Verfürth,et al.  Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.

[7]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[8]  K. Ramdani,et al.  Analyse spectrale et singularits d'un problme de transmission non coercif , 1999 .

[9]  Lucas Chesnel,et al.  T-COERCIVITY FOR SCALAR INTERFACE PROBLEMS BETWEEN DIELECTRICS AND METAMATERIALS , 2011 .

[10]  Lucas Chesnel,et al.  T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients , 2013, Numerische Mathematik.

[11]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[12]  Carsten Carstensen,et al.  Estimator competition for Poisson problems , 2010 .

[13]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[14]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[15]  Martin Vohralík,et al.  A unified framework for a posteriori error estimation for the Stokes problem , 2012, Numerische Mathematik.

[16]  J. Z. Zhu,et al.  The finite element method , 1977 .

[17]  D. Kelly,et al.  The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .

[18]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[19]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[20]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[21]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[22]  Martin Vohralík Guaranteed and Fully Robust a posteriori Error Estimates for Conforming Discretizations of Diffusion Problems with Discontinuous Coefficients , 2011, J. Sci. Comput..

[23]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[24]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..

[25]  Manil Suri,et al.  A posteriori estimation of the linearization error for strongly monotone nonlinear operators , 2007 .

[26]  A. Sihvola,et al.  Surface modes of negative-parameter interfaces and the importance of rounding sharp corners , 2008 .

[27]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.