Matroid connectivity and singularities of configuration hypersurfaces

Consider a linear realization of a matroid over a field. One associates with it a configuration polynomial and a symmetric bilinear form with linear homogeneous coefficients. The corresponding configuration hypersurface and its non-smooth locus support the respective first and second degeneracy scheme of the bilinear form. We show that these schemes are reduced and describe the effect of matroid connectivity: for (2-)connected matroids, the configuration hypersurface is integral, and the second degeneracy scheme is reduced Cohen–Macaulay of codimension 3. If the matroid is 3-connected, then also the second degeneracy scheme is integral. In the process, we describe the behavior of configuration polynomials, forms and schemes with respect to various matroid constructions.

[1]  M. Marcolli,et al.  Feynman motives and deletion-contraction relations , 2009, 0907.3225.

[2]  Eric Katz Matroid Theory for Algebraic Geometers , 2014, 1409.3503.

[3]  Lisa Hellerstein,et al.  Independence and port oracles for matroids, with an application to computational learning theory , 1996, Comb..

[4]  Edgar E. Enochs,et al.  On Cohen-Macaulay rings , 1994 .

[5]  M. Marcolli,et al.  ALGEBRO-GEOMETRIC FEYNMAN RULES , 2008, 0811.2514.

[6]  C. Bocci,et al.  Hadamard Products of Linear Spaces , 2015, 1504.04301.

[7]  E. Patterson On the Singular Structure of Graph Hypersurfaces , 2010, 1004.5166.

[8]  Christian Bogner,et al.  Feynman graph polynomials , 2010, 1002.3458.

[9]  Klaus Truemper,et al.  Matroid decomposition , 1992 .

[10]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[11]  Ronald E. Kutz Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups , 1974 .

[12]  C. Martin 2015 , 2015, Les 25 ans de l’OMC: Une rétrospective en photos.

[13]  F. Brown Periods and Feynman amplitudes , 2015, 1512.09265.

[14]  D. Doryn On One Example and One Counterexample in Counting Rational Points on Graph Hypersurfaces , 2010, 1006.3533.

[15]  D. Hilbert,et al.  Geometry and the Imagination , 1953 .

[16]  F. Brown Feynman amplitudes, coaction principle, and cosmic Galois group , 2017 .

[17]  On Motives Associated to Graph Polynomials , 2005, math/0510011.

[18]  James G. Oxley,et al.  Matroid theory , 1992 .

[19]  Craig Huneke,et al.  Integral closure of ideals, rings, and modules , 2006 .

[20]  Craig Huneke,et al.  Commutative Algebra I , 2012 .

[21]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[22]  Matroids motives, and a conjecture of Kontsevich , 2000, math/0012198.

[23]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[24]  F. Brown,et al.  A K3 in $\phi^{4}$ , 2010, 1006.4064.

[25]  Nima Anari,et al.  Log-Concave Polynomials, Entropy, and a Deterministic Approximation Algorithm for Counting Bases of Matroids , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[26]  M. Varacallo,et al.  2019 , 2019, Journal of Surgical Orthopaedic Advances.

[27]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.

[28]  Matthieu Piquerez A multidimensional generalization of Symanzik polynomials , 2019, 1901.09797.

[29]  D. J. Broadhurst,et al.  Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops , 1996, hep-th/9609128.