Ubiquitin-like conjugation by bacterial cGAS enhances anti-phage defence

[1]  J. Ren,et al.  Bacteriophages inhibit and evade cGAS-like immune function in bacteria , 2023, Cell.

[2]  R. Sorek,et al.  Bacterial origins of human cell-autonomous innate immune mechanisms , 2022, Nature Reviews Immunology.

[3]  Huilin Zhou,et al.  cGASylation by a bacterial E1-E2 fusion protein primes antiviral immune signaling , 2022, bioRxiv.

[4]  P. J. Kranzusch,et al.  CBASS phage defense and evolution of antiviral nucleotide signaling. , 2022, Current opinion in immunology.

[5]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[6]  A. Toussaint,et al.  PHROG: families of prokaryotic virus proteins clustered using remote homology , 2021, NAR genomics and bioinformatics.

[7]  Elsje G. Otten,et al.  Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection , 2021, Nature.

[8]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[9]  J. E. Peters,et al.  Optimization of T4 phage engineering via CRISPR/Cas9 , 2020, Scientific Reports.

[10]  Gil Amitai,et al.  Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems , 2020, Nature Microbiology.

[11]  Gil Amitai,et al.  Cyclic GMP–AMP signalling protects bacteria against viral infection , 2019, Nature.

[12]  Kornel Labun,et al.  CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing , 2019, Nucleic Acids Res..

[13]  Zhijian J. Chen,et al.  cGAS in action: Expanding roles in immunity and inflammation , 2019, Science.

[14]  P. J. Kranzusch,et al.  Bacterial cGAS-like enzymes synthesize diverse nucleotide signals , 2019, Nature.

[15]  C. Waters,et al.  Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae , 2018, Proceedings of the National Academy of Sciences.

[16]  Lukas Zimmermann,et al.  A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. , 2017, Journal of molecular biology.

[17]  R. Vance,et al.  Evolutionary Origins of cGAS-STING Signaling. , 2017, Trends in immunology.

[18]  O. Nureki,et al.  Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. , 2017, Annual review of biochemistry.

[19]  L. Aravind,et al.  Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling , 2015, Nucleic acids research.

[20]  Zhijian J. Chen,et al.  Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway , 2013, Science.

[21]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[22]  Peter Schuck,et al.  High-precision isothermal titration calorimetry with automated peak-shape analysis. , 2012, Analytical chemistry.

[23]  J. Mekalanos,et al.  Coordinated Regulation of Accessory Genetic Elements Produces Cyclic Di-Nucleotides for V. cholerae Virulence , 2012, Cell.

[24]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[25]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[26]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[27]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[28]  James H Naismith,et al.  An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol , 2008, BMC biotechnology.

[29]  G. Barber,et al.  STING an Endoplasmic Reticulum Adaptor that Facilitates Innate Immune Signaling , 2008, Nature.

[30]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[31]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[32]  E. Appella,et al.  Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: Application to adaptor protein complexes in cell signaling , 2007, Protein science : a publication of the Protein Society.

[33]  Wladek Minor,et al.  HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. , 2006, Acta crystallographica. Section D, Biological crystallography.

[34]  L. Aravind,et al.  The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains , 2006, Genome Biology.

[35]  Tadhg P Begley,et al.  Structure of the Escherichia coli ThiS-ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. , 2006, Biochemistry.

[36]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[37]  Takeshi Noda,et al.  A ubiquitin-like system mediates protein lipidation , 2000, Nature.

[38]  P. Schuck,et al.  Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. , 2000, Biophysical journal.

[39]  C. Brautigam Calculations and Publication-Quality Illustrations for Analytical Ultracentrifugation Data. , 2015, Methods in enzymology.

[40]  R. Villafane Construction of phage mutants. , 2009, Methods in molecular biology.